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Part 634 – Hydraulics 1 

Chapter 3 - Hydrokinetics 2 

634.0300  Introduction 3 

A.  Hydrokinetics is the study of fluids in motion. Motion in fluids is produced by the action 4 
of forces. For example, in pressurized pipelines pressure forces act as the driving forces in the 5 
flow, whereas, in open channel flow, it is the weight of water mass (gravity forces) that 6 
produces the motion. In both cases, friction between the water and the walls of the pipe or 7 
channel act as opposing forces. In steady flows, driving and opposing forces are in 8 
equilibrium. 9 

B.  The analysis of fluids in motion typically requires the determination of flow quantities 10 
such as discharge or velocity, or the determination of a linear quantity such as pipe diameter 11 
or flow depth in open channel flow. The determination of energy or head losses is also an 12 
important aspect of the analysis of fluids in motion. These analyses have practical 13 
applications in the operation of devices or systems through which fluids (water) flow, for 14 
example, irrigation pipes, outlet works from dams, and irrigation canals. 15 

C.  The principles of flow continuity and of conservation of energy are used to analyze fluids 16 
in motion. 17 

634.0301  Flow Continuity 18 

A.  The equation of continuity represents a statement of conservation of mass in fluid flow. 19 

(1) Consider, for example, a steady flow in a closed conduit of varying cross-section as 20 
shown in figure 3-1 below. Let Q be the discharge through the conduit. The equation 21 
of continuity for steady flow (i.e., Q = constant) states that: 22 

𝑄𝑄 =  𝑉𝑉1𝐴𝐴1 = 𝑉𝑉2𝐴𝐴2 = 𝑉𝑉3𝐴𝐴3 (eq. 3-1) 23 
 24 
where V1, V2, and V3 represent the flow velocities at sections 1, 2, and 3 in figure 3-1 25 
respectively. The areas of the corresponding cross-sections are A1, A2, and A3. 26 
 27 
Figure 3-1:  Flow continuity in a pipe expansion. 28 

 29 
 30 

(2)  The cross-sectional area of a circular pipe of diameter D is given by: 31 

𝐴𝐴 = 𝜋𝜋𝑟𝑟2 𝑜𝑜𝑟𝑟 𝐴𝐴 = 𝜋𝜋𝐷𝐷2

4
   (eq. 3-2)  32 
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(3)  The discharge can be written as: 33 

𝑄𝑄 = 𝑉𝑉𝐴𝐴 = 𝑉𝑉 𝜋𝜋𝐷𝐷2

4
 (eq. 3-3) 34 

(3)  Knowing the discharge Q, the velocity V in a circular conduit of diameter D can be 35 
calculated as: 36 

𝑉𝑉 =  4 𝑄𝑄
𝜋𝜋𝐷𝐷2

 (eq. 3-4) 37 

B.  In units of the English System, the velocity V is given in ft/s (or fps), while the discharge 38 
Q is given in ft3/s or cfs. Using the International System, the velocity V is given in m/s and the 39 
discharge Q is given in m3/s. Other units of discharge in the English System include gal/min 40 
(or gpm) and gal/day (or gpd), which are commonly used in water supply applications. In the 41 
operation of large reservoirs, for example, the use of acre-foot/day as a unit of discharge is 42 
not uncommon. In the International System one could also use m3/min or m3/day for large 43 
discharge operations, while the units of liters/s or liters/min are used for small discharges. 44 

C.  Example – Equation of continuity in a pipe - discharge and velocity calculation 45 

(1)  Suppose that in the pipeline of figure 3-2 the diameters are D1 = 0.25 ft (3 in), D2 = 46 
0.50 ft (6 in), and D3 = 0.75 ft (9 in), and that the velocity at section 3 is measured to 47 
be V3 =0.5 fps. Find the velocities in sections 1 and 2 and the discharge.  48 
 49 
Figure 3-2: Schematic of flow in branching pipelines. 50 

 51 
 52 

(2)  Solution: 53 
(i)  The discharge is calculated as: 54 

𝑄𝑄 =  𝑉𝑉3
𝜋𝜋𝐷𝐷32

4
= 0.5 

𝑓𝑓𝑓𝑓
𝑠𝑠

 
(3.1416)(0.75𝑓𝑓𝑓𝑓)2

4
= 0.22 𝑐𝑐𝑓𝑓𝑠𝑠  55 

 56 
(ii)  The velocities at sections 1 and 2 are, therefore, calculated as: 57 

𝑉𝑉 =  
4 𝑄𝑄
𝜋𝜋𝐷𝐷12

=
4 (0.22 𝑐𝑐𝑓𝑓𝑠𝑠)

3.1416 (0.25 𝑓𝑓𝑓𝑓)2
= 4.48 𝑓𝑓𝑓𝑓/𝑠𝑠𝑠𝑠𝑐𝑐 58 

and 59 

𝑉𝑉 =  
4 𝑄𝑄
𝜋𝜋𝐷𝐷22

=
4 (0.22 𝑐𝑐𝑓𝑓𝑠𝑠)

3.1416 (0.5 𝑓𝑓𝑓𝑓)2
= 1.12 𝑓𝑓𝑓𝑓/𝑠𝑠𝑠𝑠𝑐𝑐 60 

  61 
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(iii)  A branching pipeline in which a pipe of diameter D1 splits into two pipelines 62 
with diameters D2 and D3 is shown in figure 3-2. Continuity requires that the 63 
discharges through sections 2 and 3 add to equal the discharge through section 1: 64 

𝑄𝑄1 = 𝑄𝑄2 + 𝑄𝑄3 (eq. 3-5) 65 
(iv)  In terms of areas and velocities, the continuity equation for the branching pipe 66 

case is written as: 67 
𝑉𝑉1𝐴𝐴1 = 𝑉𝑉2𝐴𝐴2 + 𝑉𝑉3𝐴𝐴3 (eq. 3-6) 68 

(v)  Replacing the areas in terms of the diameters: 69 

𝑉𝑉1 
𝜋𝜋 𝐷𝐷12

4
= 𝑉𝑉2

𝜋𝜋 𝐷𝐷22

4
+ 𝑉𝑉3

𝜋𝜋 𝐷𝐷32

4
 (eq. 3-7) 70 

(vi)  Simplifying: 71 
𝑉𝑉1𝐷𝐷12 = 𝑉𝑉2𝐷𝐷22 = 𝑉𝑉3𝐷𝐷32 (eq. 3-8) 72 

D.  Example – Equation of continuity – velocity and discharge calculation in branching 73 
pipeline 74 

(1)  A 12-in-diameter pipeline carrying water at a velocity of 3.5 fps branches into a 6-in- 75 
diameter pipeline and a 9-in-diameter pipeline. If the velocity in the 6-in pipeline is 76 
measured to be 4.0 fps, what is the velocity in the 9-in pipeline, and what is the total 77 
discharge through the 12-in pipeline? 78 

(2)  Solution: 79 
(i)  Using D1 = 12 in = 1 ft, V1 = 3.5 fps, D2 = 6 in = 0.5 ft, V2 = 4.0 fps, and D3 = 9 in 80 

=0.75 ft, find V3 and Q1. From equation 35, i.e., V1D1
2 = V2D2

2 + V3D3
2, it 81 

follows that: 82 

𝑉𝑉3 =  
𝑉𝑉1𝐷𝐷12 − 𝑉𝑉2𝐷𝐷22

𝐷𝐷32
=  

(3.5 𝑓𝑓𝑓𝑓𝑠𝑠)(1𝑓𝑓𝑓𝑓)2 − (4 𝑓𝑓𝑓𝑓𝑠𝑠) (0.5 𝑓𝑓𝑓𝑓)2

(0.75𝑓𝑓𝑓𝑓)2
= 4.44 𝑓𝑓𝑓𝑓𝑠𝑠 83 

(ii)  The discharge through section 1 is: 84 

𝑄𝑄1 =  𝑉𝑉1  
𝜋𝜋 𝐷𝐷12

4
= (3.5 𝑓𝑓𝑓𝑓𝑠𝑠)

3.1416 (1 𝑓𝑓𝑓𝑓)2

4
= 2.75 𝑐𝑐𝑓𝑓𝑠𝑠 85 

E. The equation of continuity can also be applied to flow in open channels. Consider the flow 86 
in an open channel with a non-symmetric trapezoidal cross-section as illustrated in figure 3-3. 87 

 88 

Figure 3-3:  Non-symmetric trapezoidal cross-section in an open channel flow. 89 

 90 
 91 
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F.  This cross-section is characterized by the bottom width b, the side slopes z1 and z2, and the 93 
flow depth d. The side slopes are interpreted as z1 H:1V, i.e., z1 units horizontal to 1 unit 94 
vertical. The top width T is the length of the free surface at the cross-section. For the non-95 
symmetric trapezoidal cross-section shown above, the top width is given by: 96 

𝑇𝑇 = 𝑏𝑏 + (𝑧𝑧1 + 𝑧𝑧2)𝑑𝑑   (eq. 3-9) 97 

and the area is calculated as the average of trapezoid’s bases, b and T, multiplied by the 98 
height of the trapezoid, d : 99 

𝐴𝐴 =  �𝑇𝑇+𝑏𝑏
2
�  𝑑𝑑 = �𝑏𝑏 + 𝑧𝑧1+ 𝑧𝑧2

2
 𝑑𝑑�𝑑𝑑 (eq. 3-10) 100 

G.  Example – Equation of continuity – velocity in a trapezoidal open-channel cross-section 101 

(1)  Determine the flow velocity in a non-symmetric trapezoidal cross section of figure 3-102 
3 has b = 3 ft, d =1.3 ft, z1 = 0.5, and z2 = 1, and carries a discharge Q = 15.2 cfs.  103 

 104 
(2)  Solution: 105 

(i)  The area is calculated as: 106 

𝐴𝐴 =  �𝑏𝑏 +
𝑧𝑧1 + 𝑧𝑧2

2
 𝑑𝑑� 𝑑𝑑 =  �3𝑓𝑓𝑓𝑓 +

0.5 + 1
2

 1.3𝑓𝑓𝑓𝑓�1.3 𝑓𝑓𝑓𝑓 = 5.17 𝑓𝑓𝑓𝑓2 107 

(ii)  And the flow velocity is: V = Q/A = 15.2 cfs/5.17 ft2 = 2.94 fps 108 

H.  Example – Equation of continuity – channel width reduction 109 

(1)  Figure 3-4 below shows a rectangular open channel that reduces in channel width 110 
from b1 to b2.  In figure 3-4 suppose that b1 = 7.5 ft, and b2 = 5.0 ft. The depth of flow 111 
and velocity in section (1) are d1 = 2.5 ft and V1 = 4.5 fps. What depth of flow is 112 
required in section (2) to maintain the same flow velocity (i.e., V2 = V1 = 4.5 fps)? 113 
What is the flow discharge through the channel? 114 
 115 
Figure 3-4:  Contraction in a rectangular open channel. 116 

 117 
 118 

(2)  Solution: 119 
(i)  With the cross-sectional shape being rectangular in both sections (1) and (2), the 120 

area of the cross-section is given by A = bd. Thus, the continuity equation 121 
(equation 3-1) can be written as: 122 

𝑄𝑄 =  𝑉𝑉1𝑏𝑏1𝑑𝑑1 = 𝑉𝑉2𝑏𝑏2𝑑𝑑2 123 
(ii)  The depth at section (2) is given by: 124 

𝑑𝑑2 =  
𝑉𝑉1𝑏𝑏1𝑑𝑑1
𝑉𝑉2𝑏𝑏2

=
(4.5𝑓𝑓𝑓𝑓𝑠𝑠 )(7.5 𝑓𝑓𝑓𝑓)(2.5 𝑓𝑓𝑓𝑓)

(4.5 𝑓𝑓𝑓𝑓𝑠𝑠)(5.0 𝑓𝑓𝑓𝑓)
= 3.75 𝑓𝑓𝑓𝑓 125 

(iii)  The discharge is calculated as: 126 
𝑄𝑄 =  𝑉𝑉1𝑏𝑏1𝑑𝑑1 = 4.5 𝑓𝑓𝑓𝑓𝑠𝑠 × 7.5 𝑓𝑓𝑓𝑓 × 2.5 𝑓𝑓𝑓𝑓 = 84.38 𝑐𝑐𝑓𝑓𝑠𝑠 127 
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I.  Example – Equation of continuity – rectangular open channel diversion 129 

(1)  Figure 3-5 shows a rectangular channel of width b1 from which water is diverted 130 
through a lateral rectangular channel of width b3. The section of the main channel 131 
downstream from the diversion has a width b2 = b1.  Using b1=b2=10 ft, d1=4.0 ft, 132 
V1=1.2 fps, d2=3.5 ft, b3=5.0 ft, d3=2.5 ft, and V3=0.6 fps, determine the flow velocity 133 
at section 2, V2, as well as, the discharges through sections 1, 2, and 3. 134 
 135 
Figure 3-5:  Rectangular open channel diversion. 136 

 137 
 138 

(2)  Solution: 139 
(i)  For a branching channel as shown in figure 3-5, continuity requires that 140 

𝑄𝑄1 = 𝑄𝑄2 + 𝑄𝑄3, 𝑖𝑖. 𝑠𝑠. ,𝑉𝑉1𝑏𝑏1𝑑𝑑1 = 𝑉𝑉2𝑏𝑏2𝑑𝑑2 + 𝑉𝑉3𝑏𝑏3𝑑𝑑3 141 
Thus, the velocity at section 2 is: 142 

𝑉𝑉2 =
𝑉𝑉1𝑏𝑏1𝑑𝑑1 − 𝑉𝑉3𝑏𝑏3𝑑𝑑3

𝑏𝑏2𝑑𝑑2
 143 

     =
1.2 𝑓𝑓𝑓𝑓𝑠𝑠 × 10 𝑓𝑓𝑓𝑓 × 4 𝑓𝑓𝑓𝑓 − 0.6 𝑓𝑓𝑓𝑓𝑠𝑠 × 5 𝑓𝑓𝑓𝑓 × 2.5 𝑓𝑓𝑓𝑓

10 𝑓𝑓𝑓𝑓 × 3.5 𝑓𝑓𝑓𝑓
 144 

      = 1.157 𝑓𝑓𝑓𝑓𝑠𝑠 145 
(ii)  The discharges through the three sections are calculated as follows: 146 

𝑄𝑄1 = 𝑉𝑉1𝑏𝑏1𝑑𝑑1 = 1.2 𝑓𝑓𝑓𝑓𝑠𝑠 × 10 𝑓𝑓𝑓𝑓 × 4 𝑓𝑓𝑓𝑓 = 48 𝑐𝑐𝑓𝑓𝑠𝑠 147 
𝑄𝑄2 = 𝑉𝑉2𝑏𝑏2𝑑𝑑2 = 1.157 𝑓𝑓𝑓𝑓𝑠𝑠 × 10 𝑓𝑓𝑓𝑓 × 3.5 𝑓𝑓𝑓𝑓 = 40.5 𝑐𝑐𝑓𝑓𝑠𝑠 148 
𝑄𝑄3 = 𝑉𝑉3𝑏𝑏3𝑑𝑑3 = 0.6 𝑓𝑓𝑓𝑓𝑠𝑠 × 5 𝑓𝑓𝑓𝑓 × 2.5 𝑓𝑓𝑓𝑓 = 7.5 𝑐𝑐𝑓𝑓𝑠𝑠 149 

634.0302  Conservation of Energy 150 

A.  In the analysis of fluid flow, three types of energy are typically considered: potential or 151 
elevation energy, pressure energy, and kinetic energy. Figure 3-6 illustrates these concepts 152 
using a simple reservoir-sprinkler system.  153 

B.  The elevation of the water in the reservoir represents potential energy since it is this 154 
elevation that provides the available energy for the system. As the water flows through the 155 
pipe and is discharged through the sprinkler, it acquires motion which converts some of the 156 
potential energy into kinetic energy (energy of motion). Also, at the sprinkler, a measurable 157 
pressure exists that is related to pressure energy at that point. 158 
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C.  In a flowing fluid system as the one illustrated above, energy is conserved as it is 159 
converted from one type of energy (potential) into another (pressure or kinetic). In fluid flow 160 
these energies are typically converted to energy heads that can be easily visualized as in the 161 
potential energy head of Figure 3-6. The description of these energy heads follows in the next 162 
sections. 163 

 164 
Figure 3-6:  Flow energies illustrated with a simple reservoir-sprinkler system 165 

 166 
 167 

D.  Potential Energy - Potential energy is the ability of a water mass to perform work because 168 
of the elevation of that mass of water with respect to an arbitrary datum line or reference 169 
level. A mass of weight W, at an elevation of z feet, has a potential energy equal to Wz (ft-lb) 170 
with respect to the datum. The elevation head, z, expresses not only a linear quantity (ft), but 171 
also energy per unit weight, i.e., ft-lb/lb = ft. 172 

E.  Pressure Energy - Pressure energy at a point of a fluid flow is produced by the local 173 
pressure at the point. This pressure could be the result of a pumping action in a pipeline or of 174 
the weight of water above a certain point in open channel flow. The pressure head (pressure 175 
energy per unit weight) in pipeline flow is calculated as p/ω, pressure divided by the specific 176 
weight of water. In open channel flow applications, the pressure head is equal to the flow 177 
depth, d, and the pressure distribution is assumed to be hydrostatic. 178 

F. Kinetic Energy - The kinetic energy (K) of a mass (M) of fluid moving at a velocity (V) is 179 
given by K =1/2 MV2. Since its weight is W = Mg, the kinetic energy per unit weight is 180 
calculated as: 181 

ℎ𝑣𝑣 =  𝐾𝐾
𝑊𝑊

=  
1
2 𝑀𝑀𝑉𝑉2

𝑀𝑀𝑀𝑀
= 𝑉𝑉2

2𝑀𝑀
 (eq. 3-11) 182 

where g is the acceleration of gravity (g = 32.2 ft/s2). The term hv in equation 3-11 is referred 183 
to as the velocity head. 184 

G.  The total energy head, H, is the sum of the potential energy head (z), the pressure head 185 
(p/ω or d), and the velocity head (V2/2g). All three forms of energy head may be expressed as 186 
a linear quantity (ft), or as energy per unit weight (ft-lb/lb). 187 

 188 

  189 
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H.  Energy heads in pipe flow. Figure 3-7 illustrates the three different energy heads applied 190 
to pipe flow. Notice that, typically, the potential energy head (elevation) in a pipe flow is 191 
referenced at the centerline of the pipe. The pressure head is measured from the pipe 192 
centerline, and the distance from the datum to the top of the pressure head represents the 193 
piezometric head: 194 

ℎ = 𝑧𝑧 + 
𝑓𝑓
𝜔𝜔

 195 

 196 
Figure 3-7:  Energy heads in pipe flow. 197 

 198 
 199 

I.  The difference between the total energy head and the piezometric represents the kinetic 200 
energy. The total energy in a pipe flow is given by: 201 

𝐻𝐻 = ℎ + 𝑉𝑉
2

2𝑀𝑀
= 𝑧𝑧 + 𝑝𝑝

𝜔𝜔
+ 𝑉𝑉

2

2𝑀𝑀
   (eq. 3-12) 202 

J.  The line representing the values of the total head, H, as function of position x along the 203 
pipeline is referred to as the Energy Line (E.L.), while that representing the values of the 204 
piezometric head, h, is referred to as the Hydraulic Grade Line (HGL). Energy losses, hf, are 205 
the losses due to friction between sections (1) and (2). 206 

K.  Example – Calculation of pressure, velocity, piezometric and total head 207 

(1)  A manometer located at a point of a 6-in-diameter pipe shows a pressure reading of 6 208 
psi. The point of pressure measurement is located at an elevation of 1500 ft above 209 
mean sea level and the pipe is carrying a discharge of 0.6 cfs. Calculate the pressure 210 
head, the velocity head, the piezometric head, and the total head. 211 

(2)  Solution: 212 
(i)  The data given are D = 6 in = 0.5 ft, p = 6 psi = 6×144 psf = 864 psf, z = 213 

1500 ft, and Q = 0.6 cfs. Using ω = 62.4 lb/ft3 for the specific weight of water, 214 
the pressure head is calculated as: 215 

𝑓𝑓 𝜔𝜔⁄ = (864 𝑙𝑙𝑏𝑏 𝑓𝑓𝑓𝑓2⁄ )(62.4 𝑙𝑙𝑏𝑏 𝑓𝑓𝑓𝑓3⁄ ) = 13.85 𝑓𝑓𝑓𝑓 216 

  217 
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(ii)  The velocity can be calculated from the continuity principle using equation 3-4: 218 

𝑉𝑉 =  
4 𝑄𝑄
𝜋𝜋𝐷𝐷2

=  
(4)(0.6 𝑓𝑓𝑓𝑓

3

𝑠𝑠 )
3.1416 (0.5 𝑓𝑓𝑓𝑓2)

= 3.06 𝑓𝑓𝑓𝑓𝑠𝑠 219 

(iii)  The velocity head is: 220 

ℎ𝑣𝑣 =
𝑉𝑉2

2𝑔𝑔
=

(3.06 𝑓𝑓𝑓𝑓
3

𝑠𝑠 )2

(2)(32.2 𝑓𝑓𝑓𝑓𝑠𝑠2)
= 0.15 𝑓𝑓𝑓𝑓 221 

(iv)  The piezometric head is: 222 
ℎ = 𝑧𝑧 + 𝑓𝑓 𝜔𝜔⁄ = 1500 𝑓𝑓𝑓𝑓 + 13.85 𝑓𝑓𝑓𝑓 = 1513.85 𝑓𝑓𝑓𝑓 223 

(v)  The total head is 224 
𝐻𝐻 = ℎ + ℎ𝑣𝑣 = 1513.85 𝑓𝑓𝑓𝑓 + 0.15 𝑓𝑓𝑓𝑓 = 1514.0 𝑓𝑓𝑓𝑓 225 

(v)  Notice that in this example mean sea level is used as the datum line or reference 226 
level. If the pressure measurement point were located at 10 ft above the floor and 227 
the floor used as the datum line, then z = 10 ft, and the piezometric head and total 228 
head would be calculated as 229 

ℎ = 𝑧𝑧 + 𝑓𝑓
𝜔𝜔� = 10 𝑓𝑓𝑓𝑓 +13.85 ft = 23.85 ft 230 

and 231 
𝐻𝐻 = ℎ + ℎ𝑣𝑣 = 23.85 𝑓𝑓𝑓𝑓 + 0.15 𝑓𝑓𝑓𝑓 = 24.0 𝑓𝑓𝑓𝑓 232 

L.  In the previous example, the discharge Q was used to calculate the velocity V in a circular 233 
pipeline of diameter D. In terms of the discharge (see equations 3-4 and 11), the velocity head 234 
can be calculated as: 235 

ℎ𝑣𝑣 = 1
2𝑀𝑀
� 4𝑄𝑄
𝜋𝜋𝐷𝐷2

�
2

=  8𝑄𝑄2

𝜋𝜋2𝑀𝑀𝐷𝐷4
 (eq. 3-13) 236 

M.  Using this result the total energy head in a pipeline of diameter D carrying a discharge Q 237 
is given by: 238 

𝐻𝐻 = 𝑧𝑧 + 𝑝𝑝
𝜔𝜔

+ 8𝑄𝑄2

𝜋𝜋2𝑀𝑀𝐷𝐷4
 (eq. 3-14) 239 

N.  Example – Calculation of total head 240 

(1)  A 2-in diameter pipeline carries a flow discharge of 0.3 cfs. At a point of the flow, 241 
located at an elevation of 2.5 ft above the floor, the pressure is measured to be 2 psi. 242 
What is the total energy head at that point? 243 

(2)  Solution - Given D = 2 in = 2 in/12 ft = 0.166 ft, Q = 0.3 cfs, z = 2.5 ft, p = 2 psi = 244 
2×144 psf = 288 psf, and, with ω = 62.4 lb/ft3, the total head is: 245 

𝐻𝐻 = 𝑧𝑧 +
𝑓𝑓
𝜔𝜔

+
8𝑄𝑄2

𝜋𝜋2𝑔𝑔𝐷𝐷4
= 2.5 𝑓𝑓𝑓𝑓 +  

288 𝑙𝑙𝑏𝑏
𝑓𝑓𝑓𝑓2

62.4 𝑙𝑙𝑏𝑏
𝑓𝑓𝑓𝑓3

+ 
8 (0.3 𝑓𝑓𝑓𝑓

3

2 )2

3.14162(32.2 𝑓𝑓𝑓𝑓𝑠𝑠2)
= 10.1 𝑓𝑓𝑓𝑓 246 

  247 
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O.  Energy heads in open channel flow.  248 

(1)  The energy heads for open channel flow are illustrated in figure 3-8. The elevation 249 
head, z, refers to the location of the channel bed, while the pressure head is 250 
represented by the flow depth d. 251 

(2)  The sum of the potential energy head (z) and the flow depth (d) in open channel flow 252 
represents the water surface elevation or stage, WS = z + d. The difference between 253 
the total energy and the water surface elevation is the velocity head. The total energy 254 
in a channel flow is given by: 255 

𝐻𝐻 = 𝑊𝑊𝑊𝑊 + 𝑉𝑉2 2𝑔𝑔⁄ = 𝑧𝑧 + 𝑑𝑑 + 𝑉𝑉2 2𝑔𝑔⁄  (eq. 3-15) 256 
 257 
(3)  Of the total energy, the quantity called the specific energy is: 258 

𝐸𝐸 = 𝑑𝑑 + 𝑉𝑉2 2𝑔𝑔⁄  (eq. 3-16) 259 
(4)  This quantity represents the flow energy measured with respect to the channel bed at 260 

a given cross-section. 261 
(5)  In open channel flow, as illustrated in figure 3-8, the hydraulic grade line is 262 

represented by the water surface. As in figure 3-7, the term hf represents the energy 263 
losses due to friction between section (1) and section (2). 264 
 265 
Figure 3-8:  Energy heads in open channel flow. 266 

 267 
 268 
(6) In both the pipe flow and the open channel flow illustrated in figure 3-7 and figure 3-269 

8, respectively, the horizontal distance between cross-sections 1 and 2 is referred to 270 
as ∆x. The slope length of pipeline measured along its centerline, or the slope length 271 
of the channel between the two cross-sections, will be referred to as L. 272 

P.  Example – Velocity head, specific energy, and total head in open-channel flow 273 

(1)  A symmetric trapezoidal channel with bottom width b = 8.5 ft and side slope z = 0.5, 274 
carries a discharge of Q = 30 cfs at a depth d = 2.3 ft. Calculate the velocity head, 275 
and specific energy for this channel. If the channel bed is located at an elevation of 276 
1255.32 ft above mean sea level, calculate the water surface elevation at that point, as 277 
well as the total energy head. 278 

  279 
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(2)  Solution: 280 
(i)  Equation 3-10, or methods in the following Section 634.0303, Open Channel 281 

Flow, can be used to calculate the cross-sectional area for a symmetric 282 
trapezoidal cross-section by taking z1= z2 = z, i.e., A = (b+z⋅d)⋅d.  For this 283 
example, the data given are b = 8.5 ft, z = 0.5, and d = 2.3 ft. Thus,  284 

𝐴𝐴 = (8.5 𝑓𝑓𝑓𝑓 + 0.5 × 2.3 𝑓𝑓𝑓𝑓) × 2.3𝑓𝑓𝑓𝑓 = 22.20 𝑓𝑓𝑓𝑓2 285 
(ii)  The flow velocity for this case is given by 286 

𝑉𝑉 = 𝑄𝑄 𝐴𝐴⁄ =
30 𝑓𝑓𝑓𝑓3 𝑠𝑠⁄
22.20 𝑓𝑓𝑓𝑓2

= 1.35 𝑓𝑓𝑓𝑓 𝑠𝑠⁄  287 

and the velocity head is 288 

ℎ𝑣𝑣 =
𝑉𝑉2

2𝑔𝑔
=

(1.35 𝑓𝑓𝑓𝑓 𝑠𝑠)⁄ 2

(2 × 32.2𝑓𝑓𝑓𝑓 𝑠𝑠2)⁄ = 0.028 𝑓𝑓𝑓𝑓 289 

Thus, the specific energy is: 290 
𝐸𝐸 = 𝑑𝑑 + ℎ𝑣𝑣 = 𝑑𝑑 + 𝑉𝑉2 2𝑔𝑔⁄ = 2.3 𝑓𝑓𝑓𝑓 + 0.028 𝑓𝑓𝑓𝑓 = 2.328 𝑓𝑓𝑓𝑓 291 

(iii)  The elevation of the channel bed is z = 1255.32 ft (notice that this is a different z 292 
than the side slope z for the cross-sectional geometry), and the water surface 293 
elevation is  294 

𝑊𝑊𝑊𝑊 = 𝑧𝑧 + 𝑑𝑑 = 1255.32 𝑓𝑓𝑓𝑓 + 2.3 𝑓𝑓𝑓𝑓 = 1257.62 𝑓𝑓𝑓𝑓 295 
(iv)  The total energy head is calculated as 296 

𝐻𝐻 = 𝑧𝑧 + 𝐸𝐸 = 1255.32 𝑓𝑓𝑓𝑓 + 2.328 𝑓𝑓𝑓𝑓 = 1257.65 𝑓𝑓𝑓𝑓 297 

Q.  Equation of Energy and Bernoulli’s Principle 298 

(1)  In the diagrams shown in figure 3-7 and figure 3-8, water flows from section (1) to 299 
section (2). The diagrams indicate that the total energy head at the upstream section 300 
(1) is larger than the total energy head at the downstream section (2), i.e., H1 > H2. 301 
The difference represents the energy losses hf due to friction as the water moves from 302 
section (1) to section (2). The law of conservation of energy for both pipe flow and 303 
open channel flow can be written as: 304 

𝐻𝐻1 = 𝐻𝐻2 + ℎ𝑓𝑓 (eq. 3-17) 305 

where hf represents the energy losses due to friction between sections (1) and (2).  306 
Specifically, for the pipe flow case illustrated in figure 3-7: 307 

ℎ1 + 𝑉𝑉
2

2𝑀𝑀
=  ℎ2 + 𝑉𝑉

2

2𝑀𝑀
+ ℎ𝑓𝑓 (eq. 3-18) 308 

𝑧𝑧1 + 𝑝𝑝1
𝜔𝜔

+  𝑉𝑉1
2

2𝑀𝑀
=  𝑧𝑧2 + 𝑝𝑝2

𝜔𝜔
+ 𝑉𝑉22

2𝑀𝑀
+ ℎ𝑓𝑓 (eq. 3-19) 309 

(2)  The law of conservation of energy for open channel flow, as illustrated in figure 3-8, 310 
is written as: 311 

𝑊𝑊𝑊𝑊1 + 𝑉𝑉1
2

2𝑀𝑀
=  𝑊𝑊𝑊𝑊2 + 𝑉𝑉2

2

2𝑀𝑀
+ ℎ𝑓𝑓 (eq. 3-20) 312 

or 313 

𝑧𝑧1 + 𝑑𝑑1 +  𝑉𝑉1
2

2𝑀𝑀
=  𝑧𝑧2 + 𝑑𝑑2 + 𝑉𝑉22

2𝑀𝑀
+ ℎ𝑓𝑓 (eq. 3-21) 314 

  315 



D R
 A

 F T
Title 210 – National Engineering Handbook 

(210-634-H, 1st Edition, DRAFT Mar 2021) 
634-3.11 

(3)  In some instances of pipe flow (or other enclosed flow), the fluid can be assumed to 316 
be ideal and the friction losses are zero. This is an assumption of the Bernoulli’s 317 
principle, and the equation of energy (Bernoulli’s equation) can be written as: 318 

𝑧𝑧1 + 𝑝𝑝1
𝜔𝜔

+  𝑉𝑉1
2

2𝑀𝑀
=  𝑧𝑧2 + 𝑝𝑝2

𝜔𝜔
+ 𝑉𝑉22

2𝑀𝑀
 (eq. 3-22) 319 

(4)  In the most general case of pipe flow, however, friction losses, hf, and local losses, 320 
hL, (due to the presence of appurtenances in the pipe) must be included. Examples of 321 
appurtenances include elbows and valves. Taking into account both friction and local 322 
losses, the energy equation for pipelines can be written as: 323 

𝑧𝑧1 + 𝑝𝑝1
𝜔𝜔

+  𝑉𝑉1
2

2𝑀𝑀
=  𝑧𝑧2 + 𝑝𝑝2

𝜔𝜔
+ 𝑉𝑉22

2𝑀𝑀
+  ℎ𝑓𝑓 + ℎ𝐿𝐿 (eq. 3-23) 324 

R.  Example – Bernoulli’s principle applied to sluice gate flow 325 

(1)  Figure 3-9 shows a schematic of a sluice gate in a rectangular channel of width b. 326 
The energy line (E.L.) and the hydraulic grade line (H.G.L.) are also depicted. The 327 
horizontal energy line suggests no energy losses as the flow passes under the gate. 328 
Determine the discharge Q if the upstream and downstream depths are measured as 329 
3.5 ft and 1.0 ft and the channel width, b, is 10 ft. 330 
 331 
Figure 3-9:  Sluice gate flow. 332 

 333 
 334 

(2)  Solution: 335 
(i)  Since there are no energy losses and a horizontal bed, Bernoulli’s equation 336 

reduces to: 337 

𝑑𝑑1 + 
𝑉𝑉12

2𝑔𝑔
=  𝑑𝑑2 +

𝑉𝑉22

2𝑔𝑔
 338 

(ii)  Writing the velocity head in terms of the discharge, V1
2/2g = Q2/(2gA1

2) and 339 
V2

2/2g = Q2/(2gA2
2), and using A1 = bd1, A2 = bd2, Bernoulli’s equation 340 

becomes: 341 

𝑑𝑑1 +
𝑄𝑄2

2𝑔𝑔𝑏𝑏2𝑑𝑑12
=  𝑑𝑑1 +

𝑄𝑄2

2𝑔𝑔𝑏𝑏2𝑑𝑑22
 342 

(iii)  Solving for Q and simplifying the result produces: 343 

𝑄𝑄 = 𝑏𝑏𝑑𝑑1𝑑𝑑2�
2𝑔𝑔

𝑑𝑑1 + 𝑑𝑑2
= (10𝑓𝑓𝑓𝑓)(3.5𝑓𝑓𝑓𝑓)(1.0𝑓𝑓𝑓𝑓)�

2(32.2𝑓𝑓𝑓𝑓𝑠𝑠2
3.5𝑓𝑓𝑓𝑓 + 1.0𝑓𝑓𝑓𝑓

 344 

= 132.4 𝑐𝑐𝑓𝑓𝑠𝑠  345 
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S.  Example – Energy equation in pipelines 346 

(1)  Let the diagram in figure 3-7 represent a pipeline of constant diameter D = 6 in 347 
carrying a discharge Q = 0.5 cfs. Let the elevations of points 1 and 2 be given by z1= 348 
7 ft and z2 = 12.5 ft with respect to an arbitrary horizontal reference level (datum 349 
line). The pressure at point 2 is measured to be p2 = 15.2 psi. Calculate the velocity 350 
head for this pipe flow. If the energy loss in the pipeline is estimated to be hf = 15 ft, 351 
what is the pressure at point 1, p1 (psi)? Use ω = 62.4 lb/ft3 for the specific weight of 352 
water. 353 

(2)  Solution: 354 
(i)  Since the pipeline has a constant diameter, D = 6 in = 6/12 ft = 0.5 ft, the 355 

velocities at points 1 and 2 are the same (equation 3-4): 356 

𝑉𝑉1 = 𝑉𝑉2 = 𝑉𝑉 =
4𝑄𝑄

(𝜋𝜋𝐷𝐷2)
=

4 × (0.5 𝑓𝑓𝑓𝑓3 𝑠𝑠⁄ )
𝜋𝜋(0.5 𝑓𝑓𝑓𝑓)2

= 2.55 𝑓𝑓𝑓𝑓𝑠𝑠 357 

(ii)  The velocity head throughout the pipeline is the same and equal to (equation 3-358 
11): 359 

ℎ𝑣𝑣 = 𝑉𝑉2 2𝑔𝑔⁄ = (2.55 ft/s)2 (2 × 32.2𝑓𝑓𝑓𝑓 𝑠𝑠2⁄ ) =⁄  0.10 𝑓𝑓𝑓𝑓 360 
(iii)  Also, the velocity head can be calculated in terms of the discharge as (equation 361 

3-13): 362 

ℎ𝑣𝑣 =  
8𝑄𝑄2

𝜋𝜋2𝑔𝑔𝐷𝐷4
=

8 �0.5𝑓𝑓𝑓𝑓
3

𝑠𝑠 �
2

(3.1416)2(32.2𝑓𝑓𝑓𝑓𝑠𝑠2)(0.5𝑓𝑓𝑓𝑓)4
= 0.10 𝑓𝑓𝑓𝑓 363 

(iv)  The equation of energy for the case of Figure 3-7 is given by (equation 3-19): 364 

𝑧𝑧1 +
𝑓𝑓1
𝜔𝜔

+  
𝑉𝑉12

2𝑔𝑔
=  𝑧𝑧2 +

𝑓𝑓2
𝜔𝜔

+
𝑉𝑉22

2𝑔𝑔
+ ℎ𝑓𝑓 365 

(v)  Since the velocities are the same (V1 = V2), the equation simplifies to: 366 

𝑧𝑧1 +
𝑓𝑓1
𝜔𝜔

+ =  𝑧𝑧2 +
𝑓𝑓2
𝜔𝜔

+ ℎ𝑓𝑓 367 

 368 
(vi)  From which the pressure head at point 1 is solved for, as: 369 

 𝑓𝑓1 𝜔𝜔⁄ = 𝑧𝑧2 − 𝑧𝑧1 + 𝑓𝑓2 𝜔𝜔⁄ + ℎ𝑓𝑓 370 
= 12.5 𝑓𝑓𝑓𝑓 − 7 𝑓𝑓𝑓𝑓 + (15.2 𝑥𝑥 144 𝑙𝑙𝑏𝑏 𝑓𝑓𝑓𝑓2)/(62.4 𝑙𝑙𝑏𝑏 𝑓𝑓𝑓𝑓3) + 15 𝑓𝑓𝑓𝑓⁄⁄  371 
= 55.58 𝑓𝑓𝑓𝑓 372 

(vii)  Thus, the pressure at point 1 is: 373 

𝑓𝑓1 = 55.58𝑓𝑓𝑓𝑓 × 62.4 𝑙𝑙𝑏𝑏 𝑓𝑓𝑓𝑓3⁄ = 3,468.19
𝑙𝑙𝑏𝑏
𝑓𝑓𝑓𝑓2

=
3,468.19

144
𝑓𝑓𝑠𝑠𝑖𝑖 374 

= 24.08 𝑓𝑓𝑠𝑠𝑖𝑖 375 

T.  Example - Energy equation in open channel flow 376 

(1)  Suppose that figure 3-8 represents a reach in an open channel flow with a rectangular 377 
cross-section of width b = 12.5 ft. The depth of flow at sections 1 and 2 are measured 378 
to be d1 = 4.7 ft and d2 = 3.8 ft, respectively, and the velocity at section 1 is V1 = 4.2 379 
fps. The channel bed elevations at sections 1 and 2 are given as z1 = 25 ft and z2 = 380 
22.5 ft. Calculate the flow discharge Q and the energy loss, hf, between sections 1 and 381 
2.  382 
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(2)  Solution: 383 
(i)  The area at section 1 is: 384 

𝐴𝐴1 = 𝑏𝑏𝑑𝑑1 = 12.5 𝑓𝑓𝑓𝑓 × 4.7 𝑓𝑓𝑓𝑓 = 58.75 𝑓𝑓𝑓𝑓2 385 
and the flow discharge is 386 

𝑄𝑄 = 𝑉𝑉1𝐴𝐴1 = 4.2 𝑓𝑓𝑓𝑓 𝑠𝑠⁄ × 58.75 𝑓𝑓𝑓𝑓2 = 246.75 𝑐𝑐𝑓𝑓𝑠𝑠 387 
The area at section 2 is 388 

𝐴𝐴2 = 𝑏𝑏𝑑𝑑2 = 12.5 𝑓𝑓𝑓𝑓 × 3.8 𝑓𝑓𝑓𝑓 = 47.50 𝑓𝑓𝑓𝑓2 389 
and the flow velocity at that location is  390 

𝑉𝑉2 = 𝑄𝑄 𝐴𝐴2⁄ = (246.75 𝑓𝑓𝑓𝑓3 𝑠𝑠)⁄ (47.50 𝑓𝑓𝑓𝑓2) = 5.19 𝑓𝑓𝑓𝑓𝑠𝑠⁄  391 
 (ii)  The energy equation for the case of figure 3-8 is written as (equation 3-21): 392 

𝑧𝑧1 + 𝑑𝑑1 +  
𝑉𝑉12

2𝑔𝑔
=  𝑧𝑧2 + 𝑑𝑑2 +

𝑉𝑉22

2𝑔𝑔
+ ℎ𝑓𝑓 393 

(iii)  From which: 394 

ℎ𝑓𝑓 = �𝑧𝑧1 + 𝑑𝑑1 +
𝑉𝑉12

2𝑔𝑔�
− �𝑧𝑧2 + 𝑑𝑑2 +

𝑉𝑉22

2𝑔𝑔�
 395 

= �25 𝑓𝑓𝑓𝑓 + 4.7 𝑓𝑓𝑓𝑓 + (4.2 𝑓𝑓𝑓𝑓/𝑠𝑠)2

2(32.2 𝑓𝑓𝑓𝑓/𝑠𝑠2)
� − �22.5 𝑓𝑓𝑓𝑓 + 3.8 𝑓𝑓𝑓𝑓 + (5.19 𝑓𝑓𝑓𝑓/𝑠𝑠)2

2(32.2 𝑓𝑓𝑓𝑓/𝑠𝑠2)
� 396 

= 3.26 𝑓𝑓𝑓𝑓 397 

U.  Hydraulic and Energy Gradients 398 

(1)  Figure 3-7 and figure 3-8 represent the variation of the different energy heads in pipe 399 
flow and open channel flow, respectively. In both types of flow the line joining the 400 
total energy heads along the pipeline or open channel is the energy line (E.L.). In 401 
pipe flow, the line joining the piezometric heads along the pipeline (h = z + p/ω) is 402 
the hydraulic grade line (H.G.L.), whereas, in open-channel flow the water surface 403 
represents the hydraulic grade line. 404 

(2)  For both pipe flow and open channel flow the energy gradient, or slope of the energy 405 
line, Sf, is defined as the rate of friction head loss, hf, per unit length, L, of the 406 
pipeline or open channel: 407 

𝑊𝑊𝑓𝑓 =  ℎ𝑓𝑓
𝐿𝐿

=  𝐻𝐻1−𝐻𝐻2
𝐿𝐿

 (eq. 3-24) 408 

(3)  However, in open channel flow, the channel bed slope, So, is typically very small 409 
such that the length of the channel, L, is approximately equal to the horizontal 410 
distance ∆x, i.e., L ≈ ∆x. The energy gradient for open channels, therefore, can be 411 
defined as: 412 

𝑊𝑊𝑓𝑓 ≈  ℎ𝑓𝑓
∆𝑥𝑥

=  𝐻𝐻1−𝐻𝐻2
∆𝑥𝑥

 (eq. 3-25) 413 

(4)  The hydraulic gradient is the slope of the hydraulic grade line. For pipe flow, such 414 
gradient is defined as the change in piezometric head per unit length of pipe: 415 

𝑊𝑊ℎ =  ℎ1−ℎ2
𝐿𝐿

 (eq. 3-26) 416 

(5)  Whereas, for an open channel flow the hydraulic gradient is the water surface slope. 417 
This slope is the change in water surface elevation, WS, per unit of horizontal 418 
distance along the channel path: 419 

𝑊𝑊𝑤𝑤 =  𝑊𝑊𝑊𝑊1−𝑊𝑊𝑊𝑊2
∆𝑥𝑥

 (eq. 3-27)  420 
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V.  Example – Hydraulic and energy gradients in pipe flow 421 

(1)  The diameter of a 10-ft-long pipeline tapers from 1-ft-diameter at section 1 to 0.5-ft- 422 
diameter at section 2 of figure 3-7. Let the pressure at section 1 be p1 = 6.0 psi and 423 
that at section 2 be p2 = 5.5 psi. The pipeline is laid so that point 1 is at elevation z1 = 424 
12.5 ft and z2 = 6.2 ft. If the pipeline is carrying a flow Q = 1.5 cfs, determine the 425 
friction loss, hf, the hydraulic gradient, Sh, and the energy gradient, Sf, for the flow. 426 

(2)  Solution: 427 
(i)  For L = 10 ft, D1 = 1 ft, D2 = 0.5 ft, p1 = 6.0 psi, p2 = 5.5 psi, z1 = 12.5 ft, and z2 = 428 

6.2 ft, the velocities are: 429 

V1 = 4Q/(πD1
2) = (4×1.5 ft3/s)/(3.1416×(1ft)2) = 1.91 fps 430 

and, 431 

V2 = 4Q/(πD2
2) = (4×1.5 ft3/s)/(3.1416×(0.5 ft)2) = 7.64 fps 432 

(ii)  The piezometric or pressure heads at sections 1 and 2 are: 433 

ℎ1 = 𝑧𝑧1 +
𝑓𝑓1
𝜔𝜔

= 12.5𝑓𝑓𝑓𝑓 +
6.0(144 𝑙𝑙𝑏𝑏

𝑓𝑓𝑓𝑓2)

62.4 𝑙𝑙𝑏𝑏
𝑓𝑓𝑓𝑓3

= 26.35𝑓𝑓𝑓𝑓 434 

and, 435 

ℎ2 = 𝑧𝑧2 +
2
𝜔𝜔

= 6.2𝑓𝑓𝑓𝑓 +
5.5(144 𝑙𝑙𝑏𝑏

𝑓𝑓𝑓𝑓2)

62.4 𝑙𝑙𝑏𝑏
𝑓𝑓𝑓𝑓3

= 18.89𝑓𝑓𝑓𝑓 436 

(iii)  The difference in piezometric heads is: 437 
Δℎ = ℎ1 − ℎ2 = 26.35 𝑓𝑓𝑓𝑓 − 18.89 𝑓𝑓𝑓𝑓 = 7.46 𝑓𝑓𝑓𝑓 438 

(iv)  The total energy heads at sections 1 and 2 are: 439 

𝐻𝐻 = ℎ1 +  
𝑉𝑉12

2𝑔𝑔
= 26.35𝑓𝑓𝑓𝑓 +

�1.91𝑓𝑓𝑓𝑓𝑠𝑠 �
2

2 �32.2𝑓𝑓𝑓𝑓𝑠𝑠2�
= 26.41 𝑓𝑓𝑓𝑓 440 

and, 441 

𝐻𝐻 = ℎ2 + 
𝑉𝑉22

2𝑔𝑔
= 18.89𝑓𝑓𝑓𝑓 +

�7.64𝑓𝑓𝑓𝑓𝑠𝑠 �
2

2 �32.2𝑓𝑓𝑓𝑓𝑠𝑠2�
= 19.79 𝑓𝑓𝑓𝑓 442 

(v)  Thus, the energy loss is: 443 
ℎ𝑓𝑓 = ℎ1 − ℎ2 = 26.41 𝑓𝑓𝑓𝑓 − 19.79 𝑓𝑓𝑓𝑓 = 6.62 𝑓𝑓𝑓𝑓 444 

(vi)  The hydraulic gradient is calculated as: 445 

𝑊𝑊ℎ =  
∆ℎ
𝐿𝐿

=
7.46𝑓𝑓𝑓𝑓
10𝑓𝑓𝑓𝑓

= 0.746 446 

(vii)  The energy gradient is: 447 

𝑊𝑊𝑓𝑓 =  
ℎ𝑓𝑓
𝐿𝐿

=
6.62𝑓𝑓𝑓𝑓
10𝑓𝑓𝑓𝑓

= 0.662 448 

  449 
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W.  Example - Hydraulic and energy gradients in open channel flow 450 

(1)  In the example, Energy equation in open channel flow, the following flow parameters 451 
were given or calculated: rectangular cross-section of width b = 12.5 ft. Depths of 452 
flow: d1 = 4.7 ft and d2 = 3.8 ft. Flow velocities: V1 = 4.2 fps and V2 = 5.19 fps. Bed 453 
elevations: z1 = 25 ft and z2 = 22.5 ft. Energy head loss, hf = 3.26 ft.  If the distance 454 
between the two sections is ∆x = 2500 ft, calculate the energy gradient and the 455 
hydraulic gradient for this flow. 456 

(2)  Solution: 457 
(i)  The energy gradient: 458 

𝑊𝑊𝑓𝑓 =  ℎ𝑓𝑓 Δ𝑋𝑋� = 3.26 𝑓𝑓𝑓𝑓
2,500 𝑓𝑓𝑓𝑓� = 0.0013 459 

(ii)  The water surface elevations at sections 1 and 2 are, respectively, WS1 = z1 + d1 460 
= 25 ft + 4.7 ft = 29.7 ft, and WS2 = z2 + d2 = 22.5 ft + 3.8 ft = 26.3 ft. Thus, the 461 
hydraulic gradient, or water surface slope, is: 462 

𝑊𝑊𝑊𝑊 =
(𝑊𝑊𝑊𝑊2 −𝑊𝑊𝑊𝑊1)

Δ𝑋𝑋
=

29.7 𝑓𝑓𝑓𝑓 − 26.3 𝑓𝑓𝑓𝑓
2,500 𝑓𝑓𝑓𝑓

=
3.4𝑓𝑓𝑓𝑓

2,500 𝑓𝑓𝑓𝑓
= 0.00136 463 

634.0303  Open channel Flow 464 

A.  Open channel flow occurs when water is conveyed to a lower elevation through a conduit 465 
or channel open to the atmosphere or when a pipe flows without being full. Open channel 466 
flow is also referred to as free-surface flow. Flows in creeks, rivers, aqueducts, flumes, 467 
irrigation canals, gutters, and culverts are examples of open channel flows. 468 

B.  Open channels occur on a slope. If the slope is in the direction of the flow it is referred to 469 
as a favorable slope. If the slope is opposite to the direction of the flow, then the slope is 470 
referred to as an adverse slope. An open channel could also have a horizontal bed, in which 471 
case the slope is zero. A channel of constant slope and constant cross-section which does not 472 
change its alignment is referred to as a prismatic channel. Such is often the case for 473 
constructed channels. Natural channels, on the other hand, are often highly irregular showing 474 
varying alignment, curves, and changing cross-sectional geometry. 475 

634.0304  Uniform Open Channel Flow 476 

A.  Uniform flow in a prismatic open channel occurs when the flow depth remains constant 477 
for a constant discharge. Uniform flow typically develops in long prismatic channels, away 478 
from head or tail sections. Natural channels rarely maintain uniform flow for long reaches. 479 

B.  Figure 3-10 shows the forces acting on a section of length L of uniform flow on a channel 480 
laid on a slope So = tan(o). The slope is sufficiently small so that the distribution of 481 
pressure with depth in the flow is hydrostatic, and so that So = tan(θo) ≈ sin(θo) ≈ θo 482 
(measured in radians). 483 

 484 
  485 
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Figure 3-10:  Schematic of uniform flow in open channels. 486 

 487 
 488 

C.  Because the flow depth and the cross-sectional shapes are the same at both ends of the 489 
flow element shown, the pressure forces acting at the upstream and downstream cross- 490 
sections of the flow element will cancel each other. The remaining driving force will be the 491 
component of the weight of the flow element parallel to the channel bed. This force is given 492 
by: 493 

𝐹𝐹𝐷𝐷 = 𝑊𝑊𝑠𝑠𝑖𝑖𝑊𝑊(𝜃𝜃0) = 𝜔𝜔𝐴𝐴𝐿𝐿𝑠𝑠𝑖𝑖𝑊𝑊(𝜃𝜃0) = 𝜔𝜔𝐴𝐴𝐿𝐿𝑊𝑊0 494 

where A is the cross-sectional area of the flow. 495 

D.  Opposing this driving force is an opposite force due to friction on the channel walls, also 496 
known as the shear force. In figure 3-10, τo represents the bed shear stress (assumed uniform 497 
through the channel), and the total shear force is given by: 498 

𝐹𝐹0 = 𝜏𝜏0𝐿𝐿𝐿𝐿 499 

where P, the wetted perimeter, is the length of the channel cross-section in contact with the 500 
water. 501 

E.  For a uniform flow to occur, the driving force (weight component) and the shear force 502 
must be in equilibrium, i.e., FS = FD, or: 503 

𝜏𝜏0𝐿𝐿𝐿𝐿 = 𝜔𝜔𝐴𝐴𝐿𝐿𝑊𝑊0 504 

F.  The bed shear stress is, therefore, given by: 505 

𝜏𝜏𝑜𝑜 = 𝜔𝜔 𝐴𝐴
𝑃𝑃
𝑊𝑊𝑜𝑜 = 𝜔𝜔𝜔𝜔𝑊𝑊 (eq. 3-28) 506 

where R, the hydraulic radius, has been introduced: 507 

𝜔𝜔 = 𝐴𝐴/𝐿𝐿 (eq. 3-29) 508 

G.  Example – Shear stress in uniform open-channel flow 509 

(1)  Calculate the shear stress on the bed of an open channel with a hydraulic radius, R = 510 
0.75 ft, laid on a slope, So = 0.001. Use ω = 62.4 lb/ft3 for the specific weight of 511 
water. 512 

  513 



D R
 A

 F T
Title 210 – National Engineering Handbook 

(210-634-H, 1st Edition, DRAFT Mar 2021) 
634-3.17 

(2)  Solution: 514 
(i)  The shear stress is calculated as: 515 

𝜏𝜏𝑜𝑜 = 𝜔𝜔𝜔𝜔𝑊𝑊 = �62.4
𝑙𝑙𝑏𝑏
𝑓𝑓𝑓𝑓3�

(0.75𝑓𝑓𝑓𝑓)(0.001) = 0.0468
𝑙𝑙𝑏𝑏
𝑓𝑓𝑓𝑓2

 516 

=
0.0468 𝑙𝑙𝑏𝑏

𝑓𝑓𝑓𝑓2

144 𝑖𝑖𝑊𝑊
2

𝑓𝑓𝑓𝑓2
= 0.000325 𝑓𝑓𝑠𝑠𝑖𝑖 517 

(ii)  The shear stress τo can be written in terms of the mean flow velocity V, the 518 
density of water ρ, and a dimensionless “drag” coefficient CD: 519 

𝜏𝜏𝑜𝑜 =
1
2
𝐶𝐶𝐷𝐷𝜌𝜌𝑉𝑉2 520 

(iii)  Substituting this result into equation 3-28 for τo, and using ω = ρ⋅g: 521 
1
2
𝐶𝐶𝐷𝐷𝜌𝜌𝑉𝑉2 = 𝜌𝜌𝑔𝑔𝜔𝜔𝑊𝑊 522 

(iv)  From which it follows that the velocity can be calculated as: 523 

𝑉𝑉 = �2𝑀𝑀
𝐶𝐶𝐷𝐷

 �𝜔𝜔𝑊𝑊𝑜𝑜 = 𝐶𝐶�𝜔𝜔𝑊𝑊𝑜𝑜 (eq. 3-30) 524 

(3)  This result is known as Chezy’s equation, and the coefficient C is referred to as 525 
Chezy’s coefficient. Typical values of the Chezy coefficient range between 80 and 526 
140. For example, the value C = 120 is typically used for concrete. 527 

H.  Example – Velocity calculation in open-channel flow using Chezy’s equation 528 

(1)  Using the Chezy equation with C = 120, calculate the flow velocity in an open 529 
channel with a hydraulic radius R = 0.75 ft, laid on a slope So = 0.001. 530 

(2)  Solution - The velocity in the open channel flow is calculated as:  531 

𝑉𝑉 = 𝐶𝐶�𝜔𝜔𝑊𝑊𝑜𝑜 = 120�(0.75)(0.001) = 3.29𝑓𝑓𝑓𝑓𝑠𝑠 532 

I.  While Chezy’s equation is dimensionally sound, a different equation, Manning’s equation, 533 
has been used for more than a century for solving practical problems of uniform flow in open 534 
channels. Manning’s equation has become the most widely used uniform flow equation, with 535 
many references available for the selection of a Manning’s coefficient. For historical notes on 536 
the development of both the Chezy’s and Manning’s equations, refer to Chow (1959). 537 
Manning’s equation is presented in section 634.0306. 538 

634.0305  Geometric Characteristics of Prismatic Channels 539 

A.  In general, we are interested in calculating the following geometric characteristics of open 540 
channel cross-sections: 541 

(1)  The cross-sectional area, A (ft2) 542 
(2)  The wetted perimeter, P (ft) 543 
(3)  The top width of the section, T (ft) 544 
(4)  The hydraulic radius, R = A/P (ft) 545 
(5)  The hydraulic depth, Dh = A/T (ft) 546 

  547 
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B.  The cross-sectional area, wetted perimeter, and hydraulic radius have been defined in 548 
section 634.0301. The top-width of the section (T) is the length of the water surface in the 549 
cross-section, whereas the hydraulic depth (Dh) is the depth of an equivalent rectangular 550 
cross-section of the same area and width equal to the top-width (T). 551 

C.  The calculation of geometric characteristics for open channels of regular-shaped cross- 552 
sections is straightforward as indicated next. 553 

D.  Non-symmetric trapezoidal channel 554 

(1)  Figure 3-11 shows a non-symmetric trapezoidal channel cross-section. 555 
 556 
Figure 3-11:  Non-symmetric trapezoidal channel 557 

 558 
 559 

(2)  Given the bottom width of the cross-section, b, side slopes z1 and z2, and the flow 560 
depth, d, the geometric characteristics of the non-symmetric trapezoidal cross-section 561 
are: 562 

𝐴𝐴 =
1
2

(2𝑏𝑏 + (𝑧𝑧1 + 𝑧𝑧2)𝑑𝑑)𝑏𝑏,𝐿𝐿 563 

= 𝑏𝑏 + 𝑑𝑑(�1 + 𝑧𝑧12 + �1 + 𝑧𝑧22,𝑇𝑇 564 

= 𝑏𝑏 + (𝑧𝑧1 + 𝑧𝑧2)𝑑𝑑 (eq. 3-31) 565 
(3)  In this case, z1 and z2 represent the dimensionless side slope as horizontal 566 

displacement per unit vertical rise. For example, on the left-hand side the channel 567 
bank slopes z1 ft horizontal per each vertical foot. This is also represented as z1H:1V 568 
(z1 ft horizontal to 1 ft vertical). The right-hand-side slope would be represented as 569 
z2H:1V. If the angles θ1 and θ2 are given, the side slopes can be calculated as: 570 

z1 = tan (θ1)          z2 = tan (θ2) (eq. 3-32) 571 
(4)  Example – Geometric characteristics of a non-symmetric trapezoidal cross-section 572 

(i)  A non-symmetric trapezoidal channel flowing at a depth d = 1.5 ft, has a bottom 573 
width b = 6.5 ft, and side slopes laid on angles, θ1 = 30o and θ2 = 60o, with 574 
respect to a vertical line. Calculate the side slopes and the geometric 575 
characteristics for this cross-section. 576 

  577 
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(ii)  Solution: 578 
• First, the side slopes, z1 and z2 are calculated as: 579 

𝑧𝑧1 = tan(𝜃𝜃1) = tan(30°) = 0.5773 580 
𝑧𝑧2 = tan(𝜃𝜃2) = tan(60°) = 1.7320 581 

• The geometric characteristics of this cross-section are calculated as follows: 582 
𝐴𝐴   = �1

2� �[2𝑏𝑏 + (𝑧𝑧1 + 𝑧𝑧𝑑𝑑)𝑑𝑑] 583 

       = �1
2� �[2 × 6.5𝑓𝑓𝑓𝑓 + (0.5773 + 1.7321)1.5𝑓𝑓𝑓𝑓]1.5𝑓𝑓𝑓𝑓 = 12.35𝑓𝑓𝑓𝑓2 584 

𝐿𝐿  = 𝑏𝑏 + 𝑑𝑑(�1 + 𝑧𝑧12 + �1 + 𝑧𝑧22 585 

      = 6.5𝑓𝑓𝑓𝑓 + 1.5�1 + 0.57732 + �1 + 1.73202 = 11.23𝑓𝑓𝑓𝑓 586 
𝜔𝜔 =  𝐴𝐴 𝐿𝐿⁄ = (12.35 𝑓𝑓𝑓𝑓2) (11.23𝑓𝑓𝑓𝑓) = 1.10 𝑓𝑓𝑓𝑓⁄  587 
𝑇𝑇 = 𝑏𝑏 + (𝑧𝑧1 + 𝑧𝑧2)𝑑𝑑 = 6.5 𝑓𝑓𝑓𝑓 + (0.5773 + 1.7320) × 1.5𝑓𝑓𝑓𝑓 = 9.96 𝑓𝑓𝑓𝑓 588 

𝐷𝐷ℎ = 𝐴𝐴 𝑇𝑇⁄ =
12.35 𝑓𝑓𝑓𝑓2

9.96 𝑓𝑓𝑓𝑓
= 1.24 𝑓𝑓𝑓𝑓 589 

(5)  Figure 3-12 shows different cross-sections that can be derived from the non-590 
symmetric trapezoidal cross-section. The geometric elements of some of them are 591 
presented in detail in figure 3-12. 592 

 593 
Figure 3-12:  Channel cross-sections that can be derived from a non-symmetric 594 
trapezoidal cross- section. 595 

 596 
 597 

E.  Wide channels 598 

(1)  Channels of approximately rectangular shape that are much wider than they are deep, 599 
say, b/d > 10, are referred to as wide channels. For such channels, the hydraulic 600 
radius is approximately equal to the channel depth and to the hydraulic depth: 601 

R ≈ d ≈ Dh (eq. 3-33) 602 
  603 
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(2)  Example – Hydraulic radius for wide rectangular channel 604 
(i)  For a rectangular channel with b = 20 ft and d = 1.5 ft, calculate the hydraulic 605 

radius using the full formula and the approximation for a wide channel. 606 
(ii)  The hydraulic radius using the full definition for a rectangular channel is:  607 

𝜔𝜔𝑅𝑅 =
𝑏𝑏𝑑𝑑

𝑏𝑏 + 2𝑑𝑑
=

20𝑓𝑓𝑓𝑓 × 1.5𝑓𝑓𝑓𝑓
20𝑓𝑓𝑓𝑓 + 2 × 1.5𝑓𝑓𝑓𝑓

= 1.3 𝑓𝑓𝑓𝑓 608 

(iii)  Using the wide-channel approximation, RW = d = 1.5 ft, results in about a 15% 609 
difference. 610 

F.  Symmetric trapezoidal channel 611 

(1)  Many constructed trapezoidal channels are symmetric, thus, z1 = z2 = z, and the 612 
geometric characteristics are calculated as: 613 

𝐴𝐴 = (𝑏𝑏 + 𝑧𝑧𝑑𝑑)𝑑𝑑,    𝐿𝐿 = 𝑏𝑏 + 2𝑑𝑑�1 + 𝑧𝑧2, 𝑇𝑇 = 𝑏𝑏 + 2𝑥𝑥𝑑𝑑  614 
(2)  Example – Geometric characteristics of a symmetric trapezoidal cross-section in 615 

open channels 616 
(i)  A symmetric trapezoidal open channel with a bottom width b = 2.5 ft and side 617 

slope 1.5 H:1 V (z = 1.5) flows with a water depth d = 0.75 ft. Determine the 618 
geometric characteristics for this open channel. Also, determine the angle θ  that 619 
the channel banks make with a vertical line. 620 

(ii)  The solution is given by: 621 
𝐴𝐴 = (𝑏𝑏 + 𝑧𝑧𝑑𝑑)𝑑𝑑 = (2.5𝑓𝑓𝑓𝑓 + 1.5 × 0.75𝑓𝑓𝑓𝑓) × 0.75𝑓𝑓𝑓𝑓 = 2.72𝑓𝑓𝑓𝑓2 622 

𝐿𝐿 = 𝑏𝑏 + 2𝑑𝑑�1 + 𝑧𝑧2 = 2.5𝑓𝑓𝑓𝑓 + 2(0.75)�1 + 1.52 = 5.20𝑓𝑓𝑓𝑓 623 

𝜔𝜔 = 𝐴𝐴 𝐿𝐿⁄ =
2.72 𝑓𝑓𝑓𝑓2

5.20 𝑓𝑓𝑓𝑓
= 0.52𝑓𝑓𝑓𝑓 624 

𝑇𝑇 = 𝑏𝑏 + 2𝑧𝑧𝑑𝑑 = (2.5 𝑓𝑓𝑓𝑓) + (2)(1.5)(0.75 𝑓𝑓𝑓𝑓) = 4.75 𝑓𝑓𝑓𝑓 𝐷𝐷ℎ = 𝐴𝐴 𝑇𝑇⁄  625 
     = (2.75𝑓𝑓𝑓𝑓2) (4.75 𝑓𝑓𝑓𝑓) = 0.57 𝑓𝑓𝑓𝑓⁄  626 

(iii)  To calculate the angle θ that the channel banks make with a vertical line, use z = 627 
tan (θ), or: 628 

𝜃𝜃 = 𝑓𝑓𝑡𝑡𝑊𝑊−1(𝑧𝑧) = 𝑓𝑓𝑡𝑡𝑊𝑊−1(1.5) = 56.31° 629 

G.  Circular channel 630 

(1)  A circular open channel results when water flows in a pipe or circular conduit with a 631 
free surface, as shown in figure 3-13. 632 
 633 
Figure 3-13:  Circular cross-section in open channel flow. 634 
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(2)  For such a cross-section, the diameter D and the flow depth d (with d<D) are 636 
typically known. To calculate the geometric characteristics, the central angle β  (in 637 
radians) is calculated as: 638 

𝛽𝛽 = cos−1( 1 − 2 𝑑𝑑
𝐷𝐷

) (eq. 3-34) 639 

(3)  The geometric characteristics are calculated as: 640 

𝐴𝐴 = 𝐷𝐷2

4
(𝛽𝛽 − sin(𝛽𝛽) cos(𝛽𝛽) (eq. 3-35) 641 

𝐿𝐿 = 𝛽𝛽𝐷𝐷 (eq. 3-36) 642 
T = D ⋅ sin (β ) (eq. 3-37) 643 

Note: A full circle is composed of 360o or 2π (= 6.2832) radians. The relationship 644 
between angles in radians (θr) and angles in degrees (θo) is the same as the ratio of 645 
2π:360 = π:180, or: 646 

𝜃𝜃𝑟𝑟

𝜃𝜃𝑜𝑜
= 𝜋𝜋

180
= 0.01745 (eq. 3-38) 647 

𝜃𝜃𝑜𝑜

𝜃𝜃𝑟𝑟
= 180

𝜋𝜋
= 57.29 (eq. 3-39) 648 

(4)  Example – Geometric characteristics of a circular cross-section in open channels 649 
(i)  A pipeline 2.5-ft in diameter is flowing at a depth of 6 inches. Determine the 650 

geometric characteristics of this cross-section. 651 
(ii)  Solution: 652 

• For D = 2.5 ft and d = 6 in = 6/12 = 0.5 ft, the central angle β is calculated as 653 
follows: 654 

𝛽𝛽 = cos−1( 1 − 2
𝑑𝑑
𝐷𝐷

) = cos−1( 1 − 2
0.5
2.5

) = cos−1( 0.6) = 0.9273𝑟𝑟 655 

• The corresponding geometric characteristics are as follows: 656 

𝐴𝐴 =  
𝐷𝐷2

4
(𝛽𝛽 − sin(𝛽𝛽) cos(𝛽𝛽)) 657 

    =
2.52

4
(0.9273− (sin(0.9723) cos(0.9723)) = 0.70 𝑓𝑓𝑓𝑓 658 

𝐿𝐿 = 𝛽𝛽𝐷𝐷 = 0.9723 × 2.5 𝑓𝑓𝑓𝑓 = 2.32 𝑓𝑓𝑓𝑓 659 
𝜔𝜔 = 𝐴𝐴 𝐿𝐿 = (0.70 𝑓𝑓𝑓𝑓2) (2.32 𝑓𝑓)⁄ = 0.30 𝑓𝑓𝑓𝑓⁄  660 
𝑇𝑇 = 𝐷𝐷 sin(𝛽𝛽) = 2.5 𝑓𝑓𝑓𝑓 (sin(0.9273)) = 2 𝑓𝑓𝑓𝑓 661 
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H.  Parabolic channel 663 

(1)  The parabolic cross-section is used to approximate some natural cross-sections. Some 664 
waterways are also constructed of parabolic shape. A parabolic cross-section is 665 
characterized by its top width T and its depth d, as shown in the figure below. 666 
 667 
Figure 3-14:  Parabolic cross-section 668 

 669 
 670 

(2)  The geometric characteristics of this cross section are calculated as follows: 671 

𝐴𝐴 = 2
3
𝑑𝑑𝑇𝑇 (eq. 3-40) 672 

𝐿𝐿 = 𝑇𝑇
2
�1 + �4𝑑𝑑

𝑇𝑇
�
2

+ 𝑇𝑇2

8𝑑𝑑
∗ 𝑙𝑙𝑊𝑊 �4𝑑𝑑

𝑇𝑇
+ �1 + �4𝑑𝑑

𝑇𝑇
�
2
� (eq. 3-41) 673 

(3)  Example – Geometric characteristics of a parabolic cross-section 674 
(i)  A parabolic waterway has a depth d = 2 ft and a top width T = 50 ft. Determine 675 

the geometric characteristics of the cross-section. 676 

𝐴𝐴 =
2
3
𝑑𝑑𝑇𝑇 =

2
3

(2𝑓𝑓𝑓𝑓)(50𝑓𝑓𝑓𝑓) = 66.67𝑓𝑓𝑓𝑓2 677 

𝐿𝐿 =
𝑇𝑇
2
�1 + �

4𝑑𝑑
𝑇𝑇 �

2

+
𝑇𝑇2

8𝑑𝑑
∗ 𝑙𝑙𝑊𝑊 �

4𝑑𝑑
𝑇𝑇

+ �1 + �
4𝑑𝑑
𝑇𝑇 �

2

� 678 

     =
50𝑓𝑓𝑓𝑓

2
(1.013) +

50𝑓𝑓𝑓𝑓2

8(2𝑓𝑓𝑓𝑓)
∗ ln(0.16 + 1.013) 679 

𝐿𝐿 = 50.26𝑓𝑓𝑓𝑓 680 

𝜔𝜔 =
𝐴𝐴
𝐿𝐿

=
66.67𝑓𝑓𝑓𝑓2

50.26𝑓𝑓𝑓𝑓
= 1.33𝑓𝑓𝑓𝑓 681 

𝐷𝐷ℎ =
𝐴𝐴
𝑇𝑇

=
66.67𝑓𝑓𝑓𝑓2

50𝑓𝑓𝑓𝑓
= 1.33𝑓𝑓𝑓𝑓 682 
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634.0306  Manning’s Equation 684 

A.  The widely-used Manning’s equation was introduced earlier as an example of a non- 685 
dimensionally homogeneous equation. The equation, named after the Irish engineer who 686 
proposed it in the late 1800’s, is given by: 687 

𝑉𝑉 = 𝐶𝐶𝑢𝑢
𝑛𝑛
𝜔𝜔2 3� 𝑊𝑊0

1
2�  (eq. 3-42) 688 

where V is the flow velocity, Cu is a constant that depends on the system of units used (Cu = 689 
1.0 in the SI, and Cu = 1.486 in the ES), is the hydraulic radius, So is the channel bed 690 
longitudinal slope, and n is the Manning’s resistance coefficient. Manning’s n-values are 691 
available from a variety of sources; some values are provided in the next section, Table 2. 692 
Manning’s resistance coefficients for open channel flow. 693 

B.  Many times, it is preferable to write the Manning’s equation in terms of the water 694 
discharge Q = VA: 695 

𝑄𝑄 = 𝑉𝑉𝐴𝐴 = 𝐶𝐶𝑢𝑢
𝑛𝑛
𝐴𝐴𝜔𝜔2 3� 𝑊𝑊0

1
2�  (eq. 3-43) 696 

C.  Since the hydraulic radius is defined as R = A/P, the Manning’s equation can also be 697 
written as: 698 

𝑄𝑄 = 𝐶𝐶𝑢𝑢
𝑛𝑛
𝐴𝐴
5
3�

𝑃𝑃
2 3�
𝑊𝑊𝑜𝑜
1
2�  (eq. 3-44) 699 

D.  The values of A and P depend on the cross-sectional geometry and the flow depth. If A 700 
and P are known, calculation of the discharge Q (see above), Manning’s n, or the bed slope 701 
So, is straightforward: 702 

𝑊𝑊 = 𝐶𝐶𝑢𝑢
𝑄𝑄
𝐴𝐴
5
3�

𝑃𝑃
2 3�
𝑊𝑊𝑜𝑜
1
2�  (eq. 3-45) 703 

𝑊𝑊𝑜𝑜 = �𝑄𝑄𝑛𝑛
𝐶𝐶𝑢𝑢
�
2 𝑃𝑃4 3�

𝐴𝐴
10

3�
 (eq.3-46) 704 

E.  The USDA-NRCS Hydraulics Formula program allows for the calculation of the discharge 705 
Q for a variety of cross-sections. Examples are provided below. (See section 634.0307). 706 

F.  Calculations involving the geometric parameters (e.g., flow depth, channel width) are 707 
more complicated because the geometric characteristics A and P are raised to fractional 708 
powers (5/3, 2/3), and because the geometric characteristics are a function of the parameters. 709 
Solving the nonlinear equations for any of the geometric parameters typically requires an 710 
iterative procedure. The calculations are best done with a spreadsheet, which uses a numerical 711 
analysis method to automate the iterative procedure. 712 

G.  Although the Darcy-Weisbach equation was originally developed for pipe flow (see 713 
section 4.3, Darcy-Weisbach Equation and Friction Factor), it has been adapted for open 714 
channel flow. Refer to NEH 654.0609(d) for information on applying the Darcy- Weisbach 715 
equation to open channel flow. 716 
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H.  Manning’s Resistance Coefficient 718 

(1)  Manning’s resistance coefficient, n (see equation 42), is assumed to be a 719 
dimensionless number in modern-day practice so that the same n-value can be used in 720 
both the English and International Systems of units. The n-value depends on many 721 
factors including: 722 
(i)  Roughness of the channel lining 723 
(ii)  Changes in channel alignment 724 
(iii)  Changes in cross-section geometry 725 
(iv)  Presence of obstructions 726 
(v)  Presence of vegetation 727 
(vi)  Water depth 728 

(2)  The selection of Manning’s n depends heavily on the practitioner’s experience. 729 
Photos and descriptions of channels and floodplains for which n-values have been 730 
calculated, based on measured discharges and high-water marks, are useful (See 731 
Barnes, 1967, or Fasken, 1963). Photo galleries of n-values have been established 732 
online. 733 

(3)  When an n-value must be selected for a channel outside a practitioner’s experience, a 734 
more regimented approach is sometimes helpful (See Cowan, 1956; this method is 735 
also presented in Chow, 1959 and Fasken, 1963). In Cowan’s approach, n-values are 736 
selected and summed for five channel conditions: 737 
(i)  Bed material 738 
(ii)  Degree of surface irregularity 739 
(iii)  Variation of channel cross section 740 
(iv)  Effect of obstructions 741 
(v)  Vegetation 742 

(4)  The summed n-value may be further adjusted based on the degree of channel 743 
meandering. 744 

(5)  After selection, n-values should be calibrated with any available high-water marks 745 
and gaged flow data. In the calibration process, Manning’s n-values should be 746 
reasonably adjusted to match observed water surface profiles. 747 

(6)  The retardance potential of a grass-lined open channel, including vegetated earthen 748 
spillways, can be better evaluated with a retardance curve index rather than 749 
Manning’s n (See Temple, et.al., 1987). The retardance curve index is based on the 750 
grass stem length and stem density. 751 

(7)  The following table (figure 3-15) shows typical values of Manning’s resistance 752 
coefficients for constructed channels lined with different materials, as well as for 753 
natural streams, excavated earth channels, and floodplains. The values were compiled 754 
from many of the following references: Barnes (1967), Cowan (1956), Chaudhry 755 
(1993), Chow (1959), Fasken (1963), French (1985), Mays (1999), Munson et al. 756 
(1998), Streeter et. al. (1998), and Temple et al. (1987). 757 

(8)  Also see NEH654.0609C for additional discussion and examples of determining 758 
Manning’s resistance coefficient. 759 
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Figure 3-15:  Manning’s resistance coefficients for open channel flow 762 
Surface Lining Manning's 

n-value 
Surface Lining Manning's 

n-value 
Concrete, finished 0.012 Clean, straight, natural streams 0.030 
Concrete, unfinished 0.014 Excavated earth channels 
Gravel 0.029 Clean 0.022 
Earth 0.025 With gravel 0.025 
Wood 0.012 With brush 0.030 
Clay tile 0.014 With cobbles, stones 0.035 
Brickwork 0.015 Floodplains 
Asphalt 0.016 Pasture, farmland 0.035 
Masonry 0.025 Light brush 0.050 
Smooth steel 0.012 Heavy brush 0.075 
Corrugated metal 0.022 Trees 0.150 

 763 

634.0307  Calculations in Uniform Flow 764 

A.  Calculation of discharge using Manning’s formula is straightforward for a variety of 765 
cross-sections by using the USDA-NRCS Hydraulics Formula program. Three examples are 766 
illustrated below. An example of normal depth calculation is also shown. 767 

B.  Example  – Trapezoidal channel solution using USDA-NRCS Hydraulics Formula 768 
program 769 

(1)  A trapezoidal channel of width b = 6.5 ft and side slope z = 1.5 flows at a depth d = 770 
3.2 ft on a slope So = 0.0005. Use a Manning’s n = 0.018, and calculate the 771 
discharge. 772 

(2)  Solution: 773 
(i)  The solution is presented below in figure 3-16 using the NRCS Hydraulics 774 

Formula program for a trapezoidal cross-section: 775 
(ii)  The result is Q = 106.12 cfs, with a velocity V = 2.93 fps. The program also 776 

shows the critical depth which is developed in Section 3.9. 777 
(iii)  Note that a trapezoidal cross-section with side slope z = 0 represents a 778 

rectangular cross section. Also, a trapezoidal cross-section with bottom width b = 779 
0 represents a triangular cross section. 780 
 781 
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Figure 3-16:  Trapezoidal Section solution using the NRCS Hydraulics Formula 783 
program 784 

 785 
 786 

C.  Example – Circular channel solution using the NRCS Hydraulics Formula program 787 

(1)  A circular channel of diameter D = 3.5 ft = 3.5 ft × 12 in = 42 in flows at a depth d = 788 
1.1 ft= 13.2 in on a slope So = 0.0055. Using a Manning’s n = 0.025, calculate the 789 
discharge. 790 

(2)  Solution: 791 
(i)  The solution is presented below (figure 3-17) using the NRCS Hydraulics 792 

Formula program for a circular cross-section: 793 
 794 
Figure 3-17:  Circular channel solution using the NRCS Hydraulics Formula 795 
program 796 

 797 
 798 
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D.  Example – Parabolic channel solution using the NRCS Hydraulics Formula program 799 

(1)  A parabolic channel flows at a depth d = 5 ft and top width T = 35 ft on a slope So = 800 
0.021. Using a Manning’s n = 0.017, calculate the discharge. 801 

(2)  Solution: 802 
(i)  The solution is presented below (figure 3-18) using the NRCS Hydraulics 803 

Formula program for a parabolic cross-section: 804 
 805 
Figure 3-18:  Parabolic channel solution using the NRCS Hydraulics Formula 806 
program 807 

 808 
 809 

E.  Example – Normal depth in a wide channel 810 

(1)  Consider a channel with a Manning’s n = 0.015 laid on a slope So = 0.00461. 811 
Suppose that the channel has a width b = 30 ft and it carries a flow Q = 100 cfs. 812 
Determine the normal depth, do. 813 

(2)  Solution: 814 
(i)  A wide channel is an approximately rectangular channel whose width b is at least 815 

10 times larger than its depth, i.e., b/d>10. For wide channels, the hydraulic 816 
radius can be approximated by the flow depth (equation 3-33). The Manning’s 817 
equation for this case can be written as: 818 

𝑄𝑄 = 𝑏𝑏𝑑𝑑𝑜𝑜
𝐶𝐶𝑢𝑢
𝑊𝑊
𝑑𝑑𝑜𝑜
2
3� �𝑊𝑊𝑜𝑜 819 

(ii)  Solving for the normal depth: 820 

𝑑𝑑𝑜𝑜 = �
𝑄𝑄𝑛𝑛

𝐶𝐶𝑢𝑢𝑏𝑏�𝑊𝑊𝑜𝑜
�
3
5�

= �
100(0.015)

1.486(30)√0.00461
�
3
5�

= 0.66𝑓𝑓𝑓𝑓 821 
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634.0308  Specific Energy in Open Channels 823 

A.  The specific energy in an open channel is the sum of energy heads referred to the channel 824 
bed, i.e., the flow depth added to the velocity head: 825 

𝐸𝐸 = 𝑑𝑑 + 𝑉𝑉2

2𝑀𝑀
 (eq. 3-47) 826 

B.  In terms of the discharge Q, with V = Q/A, and A = cross-sectional area, the specific 827 
energy is written as: 828 

𝐸𝐸 = 𝑑𝑑 + 𝑄𝑄2

2𝑀𝑀𝐴𝐴2
 (eq. 3-48) 829 

C.  A specific energy diagram is a plot of the depth of flow, d, versus the specific energy, E. 830 
Figure 3-19 shows the specific energy diagram corresponding to a symmetric trapezoidal 831 
open channel of bottom b = 2 ft and side slopes z = 1.5 carrying a flow Q = 20 cfs. 832 

 833 
Figure 3- 19:  Specific energy curve for a trapezoidal open channel. 834 

 835 
 836 

D.  In figure 3-19, the vertical axis represents the depth of flow and the horizontal axis the 837 
specific energy. Notice that the curve approaches the line d = E asymptotically as the depth 838 
of flow increases. Also, the lower branch of the curve approaches the value d = 0 as the 839 
specific energy E increases. The shape of the curve shown is typical of specific energy 840 
diagrams in open channel flow. A vertical line corresponding to a specific energy E = 0.8 ft is 841 
shown. Notice that this line intersects the specific energy curve at two points (1) and (2), 842 
indicating that there are two possible flow depths that would produce the same specific 843 
energy. These are referred to as alternate depths, d1 and d2. The specific energy diagram of 844 
figure 3-19 also shows that there is a point, (c), where the specific energy is a minimum, E = 845 
Emin, for a given cross-section and discharge.  This condition is known as critical flow and the 846 
corresponding flow depth is referred to as critical depth. The subject of critical flow is 847 
discussed in the following section 634.0309. 848 
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E.  Example – Specific energy diagram for a rectangular channel cross-section 850 

(1)  A diagram such as that of Figure 3-19 or 3-21 can be used to determine, graphically, 851 
the alternate depths of flow in a given channel. For a rectangular channel of width b 852 
= 5 ft and carrying a flow of 35 cfs, a table of values of the specific energy may be 853 
produced as shown in figure 3-20: 854 
 855 
Figure 3-20:  Estimating specific energy values  856 

d(ft) A(ft2) V(fps) V2/2g (ft) E(ft) 
0.50 2.50 14.00 3.04 3.54 

0.75 3.75 9.33 1.35 2.10 
1.00 5.00 7.00 0.76 1.76 
1.10 5.50 6.36 0.63 1.73 
1.25 6.25 5.60 0.49 1.74 
1.50 7.50 4.67 0.34 1.84 
1.75 8.75 4.00 0.25 2.00 
2.00 10.00 3.50 0.19 2.19 
2.25 11.25 3.11 0.15 2.40 
2.50 12.50 2.80 0.12 2.62 
2.75 13.75 2.55 0.10 2.85 
3.00 15.00 2.33 0.08 3.08 
3.25 16.25 2.15 0.07 3.32 
3.50 17.50 2.00 0.06 3.56 
3.75 18.75 1.87 0.05 3.80 
4.00 20.00 1.75 0.05 4.05 

 857 
(2)  The resulting specific energy diagram is shown below. 858 

 859 
Figure 3-21:  Specific energy curve for a rectangular open channel. 860 
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(3)  To find the alternate depths corresponding to a specific energy E = 3 ft for this case, 862 
draw a vertical line at that value of E and find the values of d where the line E = 3 ft 863 
intercepts the specific energy diagram. From the figure, the values for the alternate 864 
depths are estimated as d1 = 2.9 ft and d2 = 0.6 ft. The specific energy diagram also 865 
reveals that the critical depth is approximately dc = 1.1 ft corresponding to a specific 866 
energy Emin = 1.7 ft. 867 

634.0309  Critical Flow 868 

A.  The specific energy diagrams shown in figure 3-19 and figure 3-21 indicate that there is a 869 
point (c) where the specific energy is minimal (E = Emin) for a given cross-section and 870 
discharge. This point represents a condition known as critical flow, and the corresponding 871 
depth of flow is known as the critical depth. Critical flow is important in the analysis of open 872 
channel flow because it represents conditions of minimal energy. Critical flow can be used 873 
for the practical measurement of fluid flows, as in the case of broad-crested weirs or Parshall 874 
flumes (see section 634.0502 – Measurements in Open Channels). 875 

C.  To determine an equation that describes critical flow conditions, one can start from the 876 
definition of the specific energy in terms of the discharge, equation 3-48, written as: 877 

𝐸𝐸(𝑑𝑑) = 𝑑𝑑 +
𝑄𝑄2

2𝑔𝑔�𝐴𝐴(𝑑𝑑)�
2 = 𝑑𝑑 +

𝑄𝑄2

2𝑔𝑔
(𝐴𝐴(𝑑𝑑))−2 878 

D.  Specific energy E, as well as, the area A of the channel’s cross-section, is a function of the 879 
flow depth d. To find the conditions of minimum energy, take the derivative of E(d) with 880 
respect to d and set it equal to zero: 881 

𝑑𝑑𝐸𝐸
𝑑𝑑(𝑑𝑑)

= 1 + (−2)
𝑄𝑄2

2𝑔𝑔 �
𝐴𝐴(𝑑𝑑)�−3

𝑑𝑑𝐴𝐴
𝑑𝑑(𝑑𝑑) = 1 −

𝑄𝑄2

𝑔𝑔𝐴𝐴3
 
𝑑𝑑𝐴𝐴
𝑑𝑑(𝑑𝑑) = 0 882 

E.  The derivative dA/d (d) can be shown to be equal to the top width of the cross-section, as 883 
illustrated in the figure below. 884 

 885 
Figure 3-22:  Relationship of cross-sectional area dA, flow depth d(d), and top width T . 886 

 887 
 888 
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F.  In the figure above, the increment in area, dA, due to a small increment in depth d(d), is 890 
dA = T d(d); thus, dA/d(d) = T, and a critical flow equation can be written as: 891 

𝑄𝑄2𝑇𝑇𝑐𝑐
𝑀𝑀𝐴𝐴𝑐𝑐3

= 1 (eq. 3-49) 892 

where the subscript, c is added to emphasize critical flow conditions.  893 

G.  Re-writing to incorporate the critical velocity, Vc = Q/Ac: 894 

𝑄𝑄2𝑇𝑇𝑐𝑐
𝑔𝑔𝐴𝐴𝑐𝑐3

=
(𝑄𝑄 𝐴𝐴𝑐𝑐� )2𝑇𝑇𝑐𝑐

𝑔𝑔𝐴𝐴𝑐𝑐3
=

𝑉𝑉𝑐𝑐2

𝑔𝑔(𝐴𝐴𝑐𝑐 𝑇𝑇𝑐𝑐� )
= 1 895 

H.  The ratio A/T was defined earlier as the hydraulic depth (Dh = A/T), thus, an equation for 896 
critical velocity can be written as: 897 

𝑉𝑉𝑐𝑐2

𝑀𝑀(𝐷𝐷ℎ)𝑑𝑑
= 1 (eq. 3-50) 898 

I.  The left-hand side of the above equation is the square of the Froude number. This 899 
dimensionless number is relevant in open channel flow, and is defined, in general, as: 900 

𝐹𝐹𝑟𝑟 = 𝑉𝑉
�𝑀𝑀(𝐷𝐷ℎ)

 (eq. 3-51) 901 

J.  Thus, the conditions of critical flow require that the Froude number be equal to 1. Another 902 
result that can be derived from the critical conditions equation (equation 3-50) is that the 903 
velocity head is half of the hydraulic depth: 904 

𝑉𝑉2

2𝑀𝑀
= 𝐷𝐷ℎ

2
 (eq. 3-52) 905 

K.  Critical depth may be calculated with the USDA-NRCS Hydraulics Formula(s) program 906 
as shown in the examples Trapezoidal channel solution using USDA-NRCS Hydraulics 907 
Formula Program and Parabolic channel solution using USDA-NRCS Hydraulics Formula 908 
Program, provided in section 634.0307. 909 

L.  Calculations of critical depth for prismatic open channels often involve solving nonlinear 910 
equations, which requires an iterative procedure. The calculations are best done with a 911 
spreadsheet, which uses a numerical analysis method to automate the iterative procedure. 912 

  913 



D R
 A

 F T
Title 210 – National Engineering Handbook 

(210-634-H, 1st Edition, DRAFT Mar 2021) 
634-3.32 

634.0310  Flow Types 914 

A.  For any energy larger than the minimum, E > Emin, there are two alternate depths of flow, 915 
as indicated in the specific energy diagrams of Figure 3-19 and Figure 3-21. One of the 916 
depths, d1 is larger than the critical depth (d1>dc), corresponding to a subcritical flow, while 917 
the second one, d2, is smaller than the critical depth, and corresponds to a supercritical flow. 918 

B.  It can be shown by calculation with the Froude number equation that for subcritical flow 919 
the Froude number is less than 1 (Fr<1), while for supercritical flow the Froude number is 920 
greater than 1 (Fr>1). 921 

C.  If an open channel is laid on a slope So such that the normal depth of flow do is equal to 922 
the critical depth of flow dc (do=dc) for a given discharge Q, then the channel bed slope So is 923 
said to be the critical slope for that flow, i.e., So = Sc. The critical slope for a channel can be 924 
found by replacing do = dc in the Manning’s equation. If the channel bed slope is smaller than 925 
the critical slope (So<Sc), the normal depth of flow is larger than the critical depth (do>dc), 926 
and the channel is said to have a mild slope. On the other hand, if the channel bed slope is 927 
larger than the critical slope (So>Sc), the normal depth of flow is smaller than the critical 928 
depth (do<dc), and the channel is said to have a steep slope. The different types of uniform 929 
flow possible in an open channel, and their corresponding slopes, are summarized in figure 3-930 
23 and figure 3-24. 931 

 932 
Figure 3-23:  Types of uniform flow in open channels. 933 

Type of flow Flow depth Slope Type of slope Froude Number 
Subcritical do> dc So< Sc Mild Fr < 1 

Critical do= dc So= Sc Critical Fr = 1 
Supercritical do< dc So. > Sc Steep Fr > 1 

 934 
 935 
Figure 3-24:  Types of uniform flow in open channels. 936 

 937 
 938 

D.  It’s worth noting that the celerity, or wave speed, c, of a surface wave in a shallow open 939 
channel of depth d is the same as the critical velocity Vc. If the flow is subcritical, c>V, and 940 
wave fronts from a surface disturbance will travel downstream at a speed c+V >0, while 941 
travelling upstream at a speed c-V>0. Here, V is the flow velocity. Thus, surface disturbances 942 
in subcritical flow can travel both upstream and downstream from their point of origin. On 943 
the other hand, if the flow in supercritical, V>c, the velocity of surface disturbances 944 
travelling downstream is still positive c+V >0, but that of disturbances traveling upstream is 945 
negative c-V<0. This last result indicates that these disturbances cannot travel upstream. 946 
Thus, surface disturbances in supercritical flow can only travel downstream from points of 947 
origin. 948 
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634.0311  Critical Flow in a Rectangular Channel 950 

A.  In a rectangular channel, the area and the top width are A = bd and T=b. Thus, equation 951 
3-49 produces the result: 952 

𝑄𝑄2𝑇𝑇𝑐𝑐
𝑔𝑔𝐴𝐴𝑐𝑐3

=
𝑄𝑄2𝑏𝑏
𝑔𝑔𝑏𝑏3𝑑𝑑𝑐𝑐3

=
𝑄𝑄/𝑏𝑏2

𝑔𝑔𝑑𝑑𝑐𝑐3
= 1 953 

B.  Introducing the unit discharge (or discharge per unit width of channel): 954 

𝑞𝑞 = 𝑄𝑄
𝑏𝑏
 (eq. 3-53) 955 

C.  Substituting the unit discharge into the equation above, and solving for the critical depth: 956 

𝑑𝑑𝑐𝑐 = �𝑞𝑞2

𝑀𝑀
3  (eq. 3-54) 957 

D.  Example – Critical flow depth in a rectangular channel 958 

(1)  Consider a rectangular channel of width, b = 30 ft and carrying a flow Q = 100 cfs. 959 
Determine the critical depth. 960 

q = Q/b = 100 cfs/30 ft = 3.33 ft2/s 961 

𝑑𝑑𝑐𝑐 = �
𝑞𝑞2

𝑔𝑔
3

= �
3.332

𝑔𝑔
3

= 0.70𝑓𝑓𝑓𝑓 962 

(2)  Since for a rectangular channel the hydraulic depth is the same as the flow depth (Dh 963 
= d), the critical specific energy (minimum energy) is found to be equal to 3/2 of the 964 
critical depth (combining equations 3-47 and 3-52): 965 

𝐸𝐸𝑐𝑐 = 𝐸𝐸𝑚𝑚𝑚𝑚𝑛𝑛 = 3
2
𝑑𝑑𝑐𝑐 (eq. 3-55) 966 

(3)  To find the critical slope, we can use the Manning’s equation (equation 3-44), with d 967 
= dc, A = bdc, P = b + 2dc, and So = Sc: 968 

𝑄𝑄 =
𝐶𝐶𝑢𝑢
𝑊𝑊

(𝑏𝑏𝑑𝑑𝑐𝑐)5 3�

(𝑏𝑏 + 2𝑑𝑑𝑐𝑐)2 3�
𝑊𝑊𝑜𝑜
1
2�  969 

(4)  Solving for critical slope: 970 

𝑊𝑊𝑐𝑐 =  �𝑄𝑄𝑛𝑛
𝐶𝐶𝑢𝑢
�
2 (𝑏𝑏+2𝑑𝑑𝑐𝑐)4 3�

(𝑏𝑏𝑑𝑑𝑐𝑐)
10

3�
 (eq. 3-56) 971 

E.  Example – Critical slope in uniform open-channel flow with rectangular cross-section 972 

(1)  A rectangular channel of width b = 4 ft, and Manning’s n = 0.012, is laid on a slope 973 
So = 0.00015 and carries a discharge Q = 20 cfs. (a) Determine the critical depth of 974 
flow. (b) Determine the critical slope. (c) What type of uniform flow is to be 975 
expected in this channel? 976 

(2)  First, determining the unit discharge: 977 

q =
Q
b

=
20 𝑐𝑐𝑓𝑓𝑠𝑠

4 𝑓𝑓𝑓𝑓
= 5𝑓𝑓𝑓𝑓2 𝑠𝑠⁄  978 
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(3)  The critical depth is calculated as: 980 

𝑑𝑑𝑐𝑐 = �
𝑞𝑞2

𝑔𝑔
3

= �
(5𝑓𝑓𝑓𝑓

2

𝑠𝑠 )2

32.2𝑓𝑓𝑓𝑓𝑠𝑠2

3

= 0.92𝑓𝑓𝑓𝑓 981 

(4)  The critical slope is: 982 

𝑊𝑊𝑐𝑐 =  �
𝑄𝑄𝑊𝑊
𝐶𝐶𝑢𝑢
�
2 (𝑏𝑏 + 2𝑑𝑑𝑐𝑐)4 3�

(𝑏𝑏𝑑𝑑𝑐𝑐)10 3�
= �

(20)(0.012)
1.486 �

2 (4 + 2(0.91))4 3�

(4(0.91)10 3�
 983 

= 0.00368 984 
(5)  Since So<Sc, the channel slope is mild, and a subcritical uniform flow is to be 985 

expected in this channel. 986 

634.0312  Obstacles in Open Channels 987 

A.  Consider a horizontal rectangular open channel that includes a hump of height ∆z at the 988 
bottom as illustrated on the left-hand side of figure 3-25. The figure also shows the specific 989 
energy diagram for a given discharge Q in reference to the original channel bed. 990 

 991 
Figure 3-25:  Hump at the bottom of a horizontal rectangular channel. 992 

 993 
 994 

B.  Figure 3-25 shows the flow at a subcritical depth d1   upstream of the hump, and at a 995 
subcritical depth d2 over the hump. The figure also shows the energy heads in sections (1) and 996 
(2), assuming no energy losses over the hump. The energy equation written between sections 997 
(1) and (2) can be written as: 998 

𝑑𝑑1 + 𝑉𝑉12

2𝑀𝑀
= ∆𝑧𝑧 + 𝑑𝑑2 = 𝑉𝑉22

2𝑀𝑀
 (eq. 3-57) 999 

C.  Alternatively, this equation can be written as: 1000 

E1 = ∆z + E2 (eq. 3-58) 1001 

D.  The specific energy diagram shows the energy levels E = E1 and E = E2 separated by a 1002 
distance ∆z, as indicated by equation 3-58, with E1>E2. The depth of flow corresponding to 1003 
energy level E = E2 is d2 < d1, thus, the water surface over the hump drops as illustrated in 1004 
figure 3-25. 1005 
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E.  If the flow depth is known at section (1), the specific energy E1 can be calculated as: 1007 

𝐸𝐸1 = 𝑑𝑑1 +
𝑉𝑉12

2𝑔𝑔
= 𝑑𝑑1 +

𝑄𝑄2

2𝑔𝑔𝑏𝑏2𝑑𝑑12
 1008 

F.  Combining equations 3-57 and 3-58 and making use of the continuity equation gives an 1009 
equation to determine the depth, d2: 1010 

𝑑𝑑1 + 𝑄𝑄2

2𝑀𝑀𝑏𝑏2𝑑𝑑12
= 𝐸𝐸1 − ∆𝑧𝑧 (eq. 3-59) 1011 

G.  Example – Change in channel bed elevation in a rectangular channel 1012 

(1)  Refer to figure 3-25. A hump of height ∆z = 0.25 ft is placed on a rectangular open 1013 
channel of width b = 5 ft carrying a discharge Q = 20 cfs. If the flow depth upstream 1014 
of the hump is d1 = 2 ft, determine the flow depth atop the hump, d2. 1015 

(2)  Solution: 1016 
(i)  Applying equation 3-59 and using several trials, two values were found for d2, 1017 

1.73 ft and 0.42 ft. The iterative calculations may be facilitated by use of a 1018 
spreadsheet. Since the flow for d1 = 2 ft is subcritical, the correct value is d2 = 1019 
1.73 ft (subcritical flow). 1020 

(ii)  To confirm d2 = 1.73 ft, consider the specific energy diagram in figure 3-25. If 1021 
the flow conditions upstream of the hump correspond to point (1) in the diagram, 1022 
the flow conditions atop the hump would correspond to point (2). If the flow 1023 
conditions upstream of the hump correspond to point (1’) in the diagram, the 1024 
flow over the hump would correspond to point (2’). In summary, if the flow 1025 
upstream of the hump is subcritical, the flow above the hump should be 1026 
subcritical (or at most, critical), while if the flow upstream of the hump is 1027 
supercritical, the flow above the hump should be supercritical (or at most, 1028 
critical). 1029 

(iii)  To check whether the flow at sections (1) and (2) are subcritical or supercritical, 1030 
one can calculate the Froude number for those sections: 1031 

𝐹𝐹𝑟𝑟1 =
𝑉𝑉1

�𝑔𝑔𝑑𝑑1
;      𝐹𝐹𝑟𝑟2 =

𝑉𝑉2
�𝑔𝑔𝑑𝑑2

 1032 

(3)  The Froude numbers at sections (1) and (2) must both be either smaller than one 1033 
(Fr1<1 and Fr2 < 1) for sub-critical flow, or larger than one (Fr1 > 1 and Fr2 > 1) for 1034 
supercritical flow. 1035 

H.  Example – Calculation of the Froude number in a rectangular channel 1036 

(1)  For the previous example, Change in channel bed elevation in a rectangular channel, 1037 
d1 = 2.00 ft, Q = 20 cfs, b = 5 ft, and V1 = Q/A = 2 ft/s. The Froude number at section 1038 
(1) is: 1039 

𝐹𝐹𝑟𝑟1 =
𝑉𝑉1

�𝑔𝑔𝑑𝑑1
=

2.00𝑓𝑓𝑓𝑓 𝑠𝑠�

�32.2𝑓𝑓𝑓𝑓 𝑠𝑠2� (2.00𝑓𝑓𝑓𝑓)
= 0.249 < 1 1040 
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(2)  Thus, the flow upstream of the hump for this example is subcritical. Two possible 1042 
depths of flow atop the hump were found, d2 = 1.73 ft and d2 = 0.42 ft. The Froude 1043 
numbers corresponding to these depths are: 1044 

𝐹𝐹𝑜𝑜𝑟𝑟 𝑑𝑑2 = 1.73𝑓𝑓𝑓𝑓, 𝐹𝐹𝑟𝑟2 =
𝑉𝑉2

�𝑔𝑔𝑑𝑑2
=

20𝑐𝑐𝑓𝑓𝑠𝑠/(5𝑓𝑓𝑓𝑓)(1.73𝑓𝑓𝑓𝑓)

�(32.2𝑓𝑓𝑓𝑓 𝑠𝑠2� )(01.73𝑓𝑓𝑓𝑓)
= 0.309 < 1 1045 

𝐹𝐹𝑜𝑜𝑟𝑟 𝑑𝑑2 = 0.42𝑓𝑓𝑓𝑓, 𝐹𝐹𝑟𝑟2 =
𝑉𝑉2

�𝑔𝑔𝑑𝑑2
=

20𝑐𝑐𝑓𝑓𝑠𝑠/(5𝑓𝑓𝑓𝑓)(0.42𝑓𝑓𝑓𝑓)

�(32.2𝑓𝑓𝑓𝑓 𝑠𝑠2� )(0.42𝑓𝑓𝑓𝑓)
= 2.589 > 1 1046 

(3)  Thus, d2 = 1.73 ft corresponds to a subcritical flow atop the hump, while d2 = 0.42 ft, 1047 
corresponds to supercritical flow atop the hump. Since the flow upstream was 1048 
subcritical, the correct answer is d2 = 1.73 ft. 1049 

(4)  There is a possibility that the hump height ∆z takes the value ∆zmax so that the flow 1050 
conditions on top of the hump are critical. In the specific energy diagram of figure 3-1051 
25, critical flow conditions correspond to point (c), by making ∆z = ∆zmax, E2 = Emin. 1052 
If the flow atop the hump is critical, the depth of flow d2 (above the hump) is the 1053 
critical depth dc, which, for a rectangular channel, can be calculated using equations 1054 
3-54 or 3-55. 1055 

(5)  If critical flow conditions are achieved atop the hump, it may be possible to measure 1056 
the depth of flow in that location (d2 = dc). The discharge can then be calculated from 1057 
equations 3-53 and 3-54, combined and rearranged: 1058 

𝑄𝑄 = 𝑏𝑏�𝑔𝑔𝑑𝑑3 (eq. 3-60) 1059 
(6)  This unique relationship between the flow discharge Q and the depth atop the hump 1060 

under critical conditions dc allows the use of relatively high humps as a discharge- 1061 
measuring device known as a broad-crested weir. See section 634.0511, Broad-1062 
crested Weirs, and section 634.0513, Long-throated Flumes for additional examples 1063 
and applications. 1064 

I.  Example – Rating curve for a broad-crested weir 1065 

(1)  Draw the rating curve (i.e., Q –vs.-dc) for a broad-crested weir in a channel that is 1066 
3.5-ft wide, for the range 0 < dc < 5.0 ft. 1067 

(2)  The table below was developed by applying equation 3-60 to produce the rating 1068 
curve as shown below. 1069 
 1070 
Figure 3-26:  Rating curve computation for a broad-crested weir 1071 

 1072 
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634.0313  Momentum Analysis in Open Channels 1074 

A.  The energy loss represented by hf in the energy equation is not easily determined in the 1075 
analysis of a hydraulic jump (see the following section 3.12 for hydraulic jump analyses). 1076 
The principle of impulse-momentum or conservation of momentum is more easily applied 1077 
(than the energy equation) to analyses involving high internal energy changes, such as 1078 
hydraulic jump or sluice gate flow analyses. Momentum may be thought of as “mass-in-1079 
motion” and an impulse as change in momentum. The principle of conservation of 1080 
momentum is used to determine forces on moving fluids. Consider, for example, the case of 1081 
the flow under a sluice gate illustrated in figure 3-9.  Figure 3-27 below shows a sluice-gate 1082 
control volume with the forces acting on it, and the flow of momentum through the control 1083 
surfaces. 1084 

 1085 
Figure 3-27:  Forces and flow of momentum for sluice gate flow. 1086 

 1087 
 1088 

B.  Figure 3-27(a) shows hydrostatic forces Fp1 and Fp2 acting in the upstream and 1089 
downstream sections of the control volume for the flow under a sluice gate. Included also in 1090 
figure 3-27(a) is the force FG that the gate exerts on the control volume. By Newton’s third 1091 
law (principle of action-reaction), the flow exerts a force -FG in the opposite direction on the 1092 
gate. Figure 3-27(b) shows the flow of momentum in (ρQV1) and out (ρQV2) of the control 1093 
volume through the control surfaces at sections (1) and (2), respectively. 1094 

C.  The principle of impulse-momentum states that the sum of forces on the control volume is 1095 
equal to the net flow of momentum out of the control volume, i.e., momentum flow out minus 1096 
momentum flow in. This principle can be expressed as the following vector equation: 1097 

∑𝐹𝐹 =  Δ(𝑓𝑓𝑄𝑄𝑉𝑉) = (𝑓𝑓𝑄𝑄𝑉𝑉)𝑜𝑜𝑢𝑢𝑓𝑓 − (𝑓𝑓𝑄𝑄𝑉𝑉)𝑚𝑚𝑛𝑛 (eq. 3-61) 1098 

D.  Specifically, for the case illustrated in Figure 3-27: 1099 

𝐹𝐹𝑝𝑝1 − 𝐹𝐹𝐺𝐺 − 𝐹𝐹𝑝𝑝2 = 𝑓𝑓𝑄𝑄𝑉𝑉2 − 𝑓𝑓𝑄𝑄𝑉𝑉1 1100 

from which it follows that: 1101 

𝐹𝐹𝐺𝐺 = �𝐹𝐹𝑝𝑝1 + 𝑓𝑓𝑄𝑄𝑉𝑉1� − (𝐹𝐹𝑝𝑝2 + 𝑓𝑓𝑄𝑄𝑉𝑉2) 1102 
  1103 
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E.  The hydrostatic forces Fp1 and Fp2 can be calculated by using equation 2-5 (210-NEH-1104 
634-2, section 634.0203C): 1105 

𝐹𝐹𝑝𝑝1 = (𝜔𝜔ℎ𝑐𝑐𝐴𝐴)1     𝑡𝑡𝑊𝑊𝑑𝑑     𝐹𝐹𝑝𝑝2 = (𝜔𝜔ℎ𝑐𝑐𝐴𝐴)2 1106 

where hcA stands for the first moment of area with respect to the free surface of a given 1107 
cross-section (hc is the depth of the centroid of the cross-section, and A is the area). Also, 1108 
replacing V1 = Q/A1 and V2 = Q/A2, and using ρ = ω/g, the expression for FG becomes: 1109 

𝐹𝐹𝐺𝐺 = 𝜔𝜔 ��ℎ𝑐𝑐𝐴𝐴 +
𝑄𝑄2

𝑔𝑔𝐴𝐴�1
− �ℎ𝑐𝑐𝐴𝐴 +

𝑄𝑄2

𝑔𝑔𝐴𝐴�2
� 1110 

F.  The quantities between parentheses in the equation above is defined as the momentum 1111 
function for open channel flow: 1112 

𝑀𝑀𝐹𝐹 = ℎ𝑐𝑐𝐴𝐴 + 𝑄𝑄2

𝑀𝑀𝐴𝐴
 (eq. 3-62) 1113 

G.  The force on the gate can now be written as: 1114 

𝐹𝐹𝐺𝐺 = 𝜔𝜔[(𝑀𝑀𝐹𝐹)1 − (𝑀𝑀𝐹𝐹)2] (eq. 3-63) 1115 

H.  For a rectangular channel, A = bd, and hc = d/2, thus, hcA = ½ bd2. Also, using the 1116 
concept of the unit discharge (discharge per unit width), q = Q/b, the term Q2/gA = q2b/gd. 1117 
The momentum function (equation 3-62) becomes: 1118 

𝑀𝑀𝐹𝐹 = ℎ𝑐𝑐𝐴𝐴 +
𝑄𝑄2

𝑔𝑔𝐴𝐴
=

1
2
𝑏𝑏𝑑𝑑2 +

𝑞𝑞2𝑏𝑏
𝑔𝑔𝑑𝑑

= 𝑏𝑏 �
𝑑𝑑2

2
+
𝑞𝑞2

𝑔𝑔𝑑𝑑�
 1119 

I.  Continuing, a unit momentum function (or momentum function per unit width) for a 1120 
rectangular open channel can be defined as: 1121 

𝑚𝑚𝐹𝐹 = 𝑀𝑀𝐹𝐹
𝑏𝑏

= 𝑑𝑑2

2
+ 𝑞𝑞2

𝑀𝑀𝑑𝑑
 (eq. 3-64) 1122 

J.  A unit momentum function diagram for a rectangular cross-section is a plot of the channel 1123 
depth (d) against the unit momentum function (mF), as illustrated in the following example. 1124 

K.  Example – Momentum function diagram for a rectangular channel 1125 

(1)  A rectangular channel of width b = 10 ft carries a discharge Q = 132 ft3/s; produce a 1126 
unit momentum function diagram for this channel.  1127 

(2)  Solution: 1128 
(i)  The unit discharge is: 1129 

𝑞𝑞 =
𝑄𝑄
𝐵𝐵

=
132 𝑓𝑓𝑓𝑓3 𝑠𝑠⁄

10 𝑓𝑓𝑓𝑓
= 13.2 𝑓𝑓𝑓𝑓2 𝑠𝑠⁄  1130 

 (ii)  The unit momentum function diagram, below, was developed by applying 1131 
equation 3-64: 1132 
 1133 

  1134 
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Figure 3-28:  Unit momentum function diagram 1135 

 1136 
 1137 

L.  Example – Calculation of force on sluice gate 1138 

(1)  In the example Bernoulli’s principle applied to sluice gate flow, which used the 1139 
sluice gate of figure 3-9, the values b = 10 ft, d1 = 3.5 ft, and d2 = 1.0 ft were used to 1140 
calculate Q = 132 ft/s3, i.e, q = Q/b = 13.2 ft2/s. Calculate the force that the flowing 1141 
water exerts on the gate. 1142 

(2)  Solution: 1143 
(i)  The force can be calculated by using the unit momentum function as follows: 1144 

(𝑚𝑚𝐹𝐹)1 =
𝑑𝑑21

2
+

𝑞𝑞2

𝑔𝑔𝑑𝑑1
=

(3.5𝑓𝑓𝑓𝑓)2

2
+

�13.3𝑓𝑓𝑓𝑓
2

𝑠𝑠 �
2

�32.2𝑓𝑓𝑓𝑓𝑠𝑠2� (3.5𝑓𝑓𝑓𝑓)
= 7.67𝑓𝑓𝑓𝑓2 1145 

(𝑚𝑚𝐹𝐹)2 =
𝑑𝑑22

2
+

𝑞𝑞2

𝑔𝑔𝑑𝑑2
=

(1.0𝑓𝑓𝑓𝑓)2

2
+

�13.3𝑓𝑓𝑓𝑓
2

𝑠𝑠 �
2

�32.2𝑓𝑓𝑓𝑓𝑠𝑠2� (1.0𝑓𝑓𝑓𝑓)
= 5.91𝑓𝑓𝑓𝑓2 1146 

(ii)  With ω = 62.4 lb/ft3, the force on the gate, as given by equation 3-63, is: 1147 
𝐹𝐹𝐺𝐺 = 𝜔𝜔[(𝑀𝑀𝐹𝐹)1 − (𝑀𝑀𝐹𝐹)2] = 𝜔𝜔𝑏𝑏[(𝑚𝑚𝐹𝐹)1 − (𝑚𝑚𝐹𝐹)2] 1148 

𝐹𝐹𝐺𝐺 = 62.4
𝑙𝑙𝑏𝑏
𝑓𝑓𝑓𝑓3 (10𝑓𝑓𝑓𝑓)�7.67𝑓𝑓𝑓𝑓2 − 5.91𝑓𝑓𝑓𝑓2� = 1098.24𝑙𝑙𝑏𝑏 1149 

(iii)  An analysis of the unit momentum function diagram used in the example 1150 
Momentum function diagram for a rectangular channel, above, indicates that 1151 
there are two possible depths associated with a given value of mF. This is 1152 
illustrated in the figure below. These two depths are referred to as conjugate 1153 
depths. 1154 
 1155 
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Figure 3-29:  Conjugate depths in the unit momentum function diagram for a 1157 
rectangular open channel. 1158 

 1159 
 1160 

(iv)  The unit momentum function diagram also shows that there is a point where the 1161 
unit momentum function becomes a minimum, mF = (mF)min. It can be shown 1162 
that this point of minimum momentum function corresponds to critical flow.  1163 
Thus, for a given value of the momentum function there is a subcritical and a 1164 
supercritical depth of flow, the conjugate depths. 1165 

634.0314  Hydraulic Jumps 1166 

A.  A hydraulic jump consists of a sudden increase of water depth in an open channel from a 1167 
supercritical depth (d1<dc) to a subcritical depth (d2>dc). A hydraulic jump could occur at the 1168 
foot of a spillway as illustrated in the following figure. 1169 

 1170 
Figure 3-30:  Hydraulic jump produced by a stilling basin at the base of a spillway. 1171 

 1172 
 1173 

B.  The figure below, shows a photograph of a hydraulic jump at the base of a model of a 1174 
dam spillway. 1175 

 1176 
  1177 
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Figure 3-31:  Hydraulic jump observed at the foot of a model spillway (Courtesy of the Utah 1178 
Water Research Laboratory). 1179 

 1180 
 1181 

C.  The hydraulic jump is typically an abrupt raise in the water surface showing a rough 1182 
surface with strong turbulence and producing a large amount of air entrainment. This area of 1183 
strong turbulence and marked air entrainment is referred to as the roller of the hydraulic 1184 
jump. The sketch of the hydraulic jump shown in figure 3-30 indicates an energy loss hj 1185 
through the jump. 1186 

D.  Since energy is not conserved through the jump, analysis of the hydraulic jump is better 1187 
performed using the impulse-momentum principle. Forces on a control volume enclosing the 1188 
jump, as well as the momentum flow through the corresponding control surfaces, are shown 1189 
below. 1190 

 1191 
Figure 3-32:  Forces and flow of momentum for a hydraulic jump. 1192 

 1193 
 1194 

E,  Besides the hydrostatic forces Fp1 and Fp2, the control volume is affected by a shear force 1195 
at the wetted perimeter Fs. Using the principle of impulse-momentum for the jump results in 1196 
an equation like that of the force on a sluice gate (equation 3-63): 1197 

𝐹𝐹𝐺𝐺 = 𝜔𝜔[(𝑀𝑀𝐹𝐹)1 − (𝑀𝑀𝐹𝐹)2]  1198 
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F.  Since the hydraulic jump occurs along a relatively small length of the channel, the shear 1199 
force Fs is negligible, and the impulse-momentum principle for the hydraulic jump results in: 1200 

(𝑀𝑀𝐹𝐹)1 = (𝑀𝑀𝐹𝐹)2 1201 

G.  If the hydraulic jump occurs in a rectangular channel, the principle of impulse-momentum 1202 
produces the result: 1203 

𝑑𝑑12

2
+

𝑞𝑞2

𝑔𝑔𝑑𝑑1
=
𝑑𝑑22

2
+

𝑞𝑞2

𝑔𝑔𝑑𝑑2
 1204 

H.  The depths of flow upstream (d1) and downstream (d2) of the jump are known as 1205 
conjugate depths. 1206 

I.  Algebraic manipulation of the above equation gives the following results for a horizontal 1207 
rectangular-channel hydraulic jump: 1208 

(1)  Unit discharge (discharge per unit width): 1209 

𝑞𝑞 = �𝑀𝑀𝑑𝑑1𝑑𝑑2(𝑑𝑑1+𝑑𝑑2)
2

 (eq. 3-65) 1210 

 1211 
(2)  Ratio of depths: 1212 

𝑑𝑑2
𝑑𝑑1

= 1
2
�−1 + �1 + 8𝑞𝑞2

𝑀𝑀𝑑𝑑23
� (eq. 3-66) 1213 

or, 1214 
𝑑𝑑1
𝑑𝑑2

= 1
2
�−1 + �1 + 8𝑞𝑞2

𝑀𝑀𝑑𝑑23
� (eq. 3-67) 1215 

(3)  The energy head loss is equal to the difference in specific energy before and after the 1216 
jump: 1217 

ℎ𝑓𝑓 = (𝑑𝑑2−𝑑𝑑1)3

4𝑑𝑑1𝑑𝑑2
 (eq. 3-68) 1218 

 1219 
(4)  The length of the jump, Lj, cannot be determined from energy or momentum 1220 

considerations. However, experimental results reveal that: 1221 

4 < 𝐿𝐿𝑗𝑗
𝑑𝑑2

< 6 (eq. 3-69) 1222 

(5)  Thus, the average value can be used as a first approximation to the jump length: 1223 
𝐿𝐿𝑗𝑗 = 5𝑑𝑑2 (eq. 3-70) 1224 

J.  Example – Discharge, head loss, and length of a hydraulic jump in a rectangular channel 1225 

(1)  A hydraulic jump is observed in a rectangular channel and the upstream and 1226 
downstream depths are measured to be d1 = 0.50 ft and d2 = 3.5 ft, respectively. 1227 
Please refer to figure 3-30 as a schematic. Determine (a) the discharge per unit width, 1228 
(b) the energy head loss through the jump, and (d) an approximation to the jump 1229 
length. 1230 
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(2)  Solution: 1232 
(i)  The unit discharge is (equation 3-65): 1233 

𝑞𝑞 = �𝑔𝑔𝑑𝑑1𝑑𝑑2(𝑑𝑑1 + 𝑑𝑑2)
2

= �32.2𝑓𝑓𝑓𝑓𝑠𝑠2 (0.50𝑓𝑓𝑓𝑓)(3.5𝑓𝑓𝑓𝑓)(0.50𝑓𝑓𝑓𝑓 + 3.5𝑓𝑓𝑓𝑓)

2
 1234 

= 10.62
𝑓𝑓𝑓𝑓2

𝑠𝑠
 1235 

(ii)  The energy head loss is (equation 3-68): 1236 

ℎ𝑓𝑓 =
(𝑑𝑑2 − 𝑑𝑑1)3

4𝑑𝑑1𝑑𝑑2
=

(3.5𝑓𝑓𝑓𝑓 − 0.50𝑓𝑓𝑓𝑓)3

(4)(0.5𝑓𝑓𝑓𝑓)(3.5𝑓𝑓𝑓𝑓) = 3.86𝑓𝑓𝑓𝑓 1237 

(iii)  An approximation to the jump length is (equation 3-70): 1238 
𝐿𝐿𝑗𝑗 = 5𝑑𝑑2 = 5 × 3.5 𝑓𝑓𝑓𝑓 = 17.5 𝑓𝑓𝑓𝑓 1239 

K.  Example – Flow depth, head loss, and length of hydraulic jump in a rectangular channel 1240 

(1)  A hydraulic jump takes place in a rectangular channel of width b = 5.5 ft that carries 1241 
a discharge Q = 25 cfs. Please refer to figure 3-30 as a schematic. If the depth 1242 
upstream of the jump is determined to be d1 = 0.75 ft, by means of water surface 1243 
profile calculations, (see section 3.15) determine: (a) the depth downstream of the 1244 
jump, (b) the energy head loss through the jump, and (c) an approximation to the 1245 
jump length. 1246 

(2)  Solution: 1247 
(i)  The unit discharge is: 1248 

𝑞𝑞 =
𝑄𝑄
𝑏𝑏 =

25 𝑐𝑐𝑓𝑓𝑠𝑠
5.5 𝑓𝑓𝑓𝑓 = 4.55 𝑓𝑓𝑓𝑓𝑠𝑠/𝑠𝑠 1249 

(ii)  From equation 3-66, d2 is found: 1250 

𝑑𝑑2 =
𝑑𝑑1
2 �−1 + �1 +

8𝑞𝑞2

𝑔𝑔𝑑𝑑23
� =

0.75
2 �−1 + �1 +

8(4.55𝑓𝑓𝑓𝑓
2

𝑠𝑠 )2

(32.2𝑓𝑓𝑓𝑓𝑠𝑠2)(0.75𝑓𝑓𝑓𝑓)
� 1251 

= 0.987𝑓𝑓𝑓𝑓 1252 
(iii)  The energy head loss is (equation 3-68): 1253 

ℎ𝑓𝑓 =
(𝑑𝑑2 − 𝑑𝑑1)3

4𝑑𝑑1𝑑𝑑2
=

(0.987𝑓𝑓𝑓𝑓 − 0.75𝑓𝑓𝑓𝑓)3

4(0.987𝑓𝑓𝑓𝑓)0.75𝑓𝑓𝑓𝑓) = 0.0045𝑓𝑓𝑓𝑓 1254 

(iv)  An approximation to the jump length is (equation 3-70): 1255 
𝐿𝐿𝑗𝑗 = 5𝑑𝑑2 = 5 × 0.987 𝑓𝑓𝑓𝑓 = 4.94 𝑓𝑓𝑓𝑓 1256 

L.  Figure 3-33 illustrates a hydraulic jump occurring over an obstacle or a baffle block. 1257 

 1258 
  1259 



D R
 A

 F T
Title 210 – National Engineering Handbook 

(210-634-H, 1st Edition, DRAFT Mar 2021) 
634-3.44 

Figure 3-33:  Hydraulic jump over a baffle block. 1260 

 1261 
 1262 

M.  For the case illustrated in figure 3-33, equations 3-65 through 3-68 no longer apply 1263 
because the force that the obstacle or block exerts on the flow is not negligible. However, the 1264 
principle of impulse-momentum may be applied in the same manner as it was for sluice- gate 1265 
flow: 1266 

𝐹𝐹𝑜𝑜 = 𝜔𝜔[(𝑀𝑀𝐹𝐹)1 − (𝑀𝑀𝐹𝐹)2] (eq. 3-71) 1267 

N.  Where (MF)1 and (MF)2 are the momentum functions (equation 3-63) for the sections 1268 
upstream and downstream of the hydraulic jump, respectively. For a rectangular cross- 1269 
section, the above equation can be written as: 1270 

𝐹𝐹𝑜𝑜 = 𝜔𝜔𝑏𝑏[(𝑚𝑚𝐹𝐹)1 − (𝑚𝑚𝐹𝐹)2] (eq. 3-72) 1271 

O.  Where ω is the specific weight of water, b is the channel width, and the unit momentum 1272 
function, mF, is calculated by equation 3-64. 1273 

P.  Example – Calculation of force on an obstacle producing a hydraulic jump in a rectangular 1274 
channel 1275 

(1)  A hydraulic jump in a rectangular channel of width b = 10 ft is produced by an 1276 
obstacle at the channel bed. Please refer to figure 3-33 as a schematic. If the depths 1277 
upstream and downstream of the jump are determined to be d1 = 0.95 ft and d2 = 1.25 1278 
ft, respectively, and the discharge in the channel is Q = 80 ft/s3. Calculate the force 1279 
that the flowing water exerts on the obstacle. 1280 

(2)  Solution: 1281 
(i)  The unit discharge is: 1282 

𝑞𝑞 =
𝑄𝑄
𝑏𝑏

=
80 𝑐𝑐𝑓𝑓𝑠𝑠
10 𝑓𝑓𝑓𝑓

= 8 𝑓𝑓𝑓𝑓𝑠𝑠/𝑠𝑠 1283 

(ii)  The force can be calculated by using the unit momentum function (equation 3-1284 
64): 1285 

(𝑚𝑚𝐹𝐹)1 =
𝑑𝑑2

2
+
𝑞𝑞2

𝑔𝑔𝑑𝑑
=

(0.95𝑓𝑓𝑓𝑓)2

2
+

�8𝑓𝑓𝑓𝑓
2

𝑠𝑠 �
2

32.3𝑓𝑓𝑓𝑓𝑠𝑠2 (0.95𝑓𝑓𝑓𝑓)
= 2.543𝑓𝑓𝑓𝑓2 1286 

(iii)  With ω = 62.4 lb/ft3, the force on the obstacle, as given by equation 3-71, is: 1287 
𝐹𝐹𝑜𝑜 = 𝜔𝜔[(𝑀𝑀𝐹𝐹)1 − (𝑀𝑀𝐹𝐹)2] = 𝜔𝜔𝑏𝑏[(𝑚𝑚𝐹𝐹)1 − (𝑚𝑚𝐹𝐹)2] 1288 

𝐹𝐹𝑜𝑜 = 62.4 𝑙𝑙𝑏𝑏
𝑓𝑓𝑓𝑓3

(10𝑓𝑓𝑓𝑓)[2.543𝑓𝑓𝑓𝑓2 − 2.371𝑓𝑓𝑓𝑓2] = 107.6𝑙𝑙𝑏𝑏  1289 
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634.0315  Varying Open Channel Flow 1290 

A.  Uniform flow has a constant depth and is achieved when the driving force (gravity) is in 1291 
balance with the resisting force (shear forces) on the channel boundary. The entrance from a 1292 
reservoir into a long open channel, as illustrated in figure 3-34, below, may include a zone of 1293 
varying flow depth, before uniform flow is achieved. 1294 

 1295 
Figure 3-34:  Varying flow from a reservoir leading to uniform flow in an open channel. 1296 

 1297 
 1298 

B.  A zone of varying flow depth, as the one illustrated in figure 3-34, is referred to as 1299 
gradually varied flow (GVF). Gradually varied flow zones may be very long. Hydraulic 1300 
jumps (figure 3-30) or flows over an obstacle (figure 3-33), on the other hand, are examples 1301 
of rapidly varied flow, with the flow depth changing quickly. Flow depths generally vary 1302 
over the entire length of natural channels. 1303 

634.0316  Gradually-varied Flow 1304 

A.  Figure 3-8 shows the energy heads in a gradually varied flow between two sections 1305 
separated by a horizontal distance ∆x. The slopes shown in that figure include: 1306 

B.  Slope of the energy line, Sf = hf /L, where hf = energy head loss, and L = length between 1307 
sections (1) and (2) measured along channel. 1308 

C.  Slope of the water surface, Sw = (WS1-WS2)/∆x, where WS1 and WS2 are the water surface 1309 
elevations at sections (1) and (2) 1310 

D.  Slope of the channel bed, So = (z1-z2)/∆x, where z1 and z2 are the bed elevations at 1311 
sections (1) and (2) 1312 

E.  Because typically the channel bed slope So is small, the length of channel L is 1313 
approximately equal to the horizontal length ∆x between sections (1) and (2), i.e., L ≈ ∆x, and 1314 
Sf ≈ hf / ∆x. 1315 

F.  Two equations useful in calculating GVF parameters include the energy equation (see 1316 
section 634.0302), written as: 1317 

𝑧𝑧1 + 𝑑𝑑1 + 𝑉𝑉2

2𝑀𝑀
= 𝑧𝑧1 + 𝑑𝑑1 + 𝑉𝑉2

2𝑀𝑀
+ ℎ𝑓𝑓 (eq. 3-73) 1318 

G.  And Manning’s equation, used to estimate the energy slope, Sf: 1319 

𝑊𝑊𝑓𝑓 = �𝑄𝑄𝑛𝑛
𝐶𝐶𝑢𝑢
�
2
� 1

�(𝐴𝐴)(𝑅𝑅ℎ
2 3� �

2� (eq. 3-74)  1320 
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H.  Figures 3-35 and 3-36 illustrate two common forms of GVF. In figure 3-35 a uniform 1321 
flow in a mild-slope channel approaches an overfall. The GVF curve approaches the line of 1322 
uniform flow (do) asymptotically at (a), while approaching the line of critical flow (dc) almost 1323 
perpendicularly at (b). The GVF curve in the figure below is referred to as a drawdown curve. 1324 

 1325 
Figure 3-35:   Gradually-varied flow (GVF) near an overfall. 1326 

 1327 
 1328 

I.  Another example of GVF is shown in figure 3-36. In this case, a weir across a channel 1329 
forces the water depth above the normal depth of flow. The figure shows a GVF curve that 1330 
approaches the normal depth line asymptotically at point (a). The curve in the figure below is 1331 
referred to as a backwater curve. 1332 

 1333 
Figure 3-36:  Gradually-varied flow (GVF) produced by a weir. 1334 

 1335 
 1336 

634.0317  Classification of Gradually-Varied Flow 1337 

A.  GVF curves cannot cross the lines of normal depth (do) or of critical depth (dc). Thus, 1338 
backwater curves or drawdown curves must be contained within the region limited by the 1339 
channel bed and the closest of the do or dc lines, the region between those lines, or the region 1340 
above the highest of the do and dc lines. These two or three regions are indicated in figure 3-1341 
37. GVF curves are classified according to the type of slope of the channel and the region 1342 
where they occur. For example, a curve above the do line in a mild-slope channel would be 1343 
classified as M1, and so on. The different types of gradually varied flow curves are illustrated 1344 
in figure 3-37. 1345 

 1346 
  1347 
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Figure 3-37:  Classification of gradually-varied flow (GVF). 1348 

 1349 
 1350 

B.  The curves of figure 3-37 can be used to sketch the type of gradually-varied flow 1351 
expected on a given channel. 1352 

C.  The following figure illustrates the type of curves that can be generated by a sluice gate 1353 
placed across the channel, so that it produces a supercritical flow under the gate. The channel 1354 
ends with an overfall. 1355 

 1356 
Figure 3-38:  Gradually-varied flow (GVF) curves in a mild-slope open channel with a sluice 1357 
gate and overfall. 1358 

 1359 
 1360 

D.  The sluice gate in figure 3-38 produces an M1 curve upstream, and an M3 curve 1361 
downstream of the gate. The M3 curve ends in a hydraulic jump (J) that raises the water level 1362 
to the normal depth of flow before reaching the overfall. The overfall produces an M2 curve 1363 
at the downstream end of the channel. 1364 

  1365 
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634.0318  Standard step method 1366 

A.  Manning’s equation provides a good estimate of flow depth, when uniform flow 1367 
conditions exist. See section 634.0307, Calculations in Uniform Flow. Because uniform flow 1368 
conditions of constant depth and discharge do not normally exist in natural streams and in 1369 
many reaches of constructed channels, other methods, such as the standard step, are needed to 1370 
more accurately calculate flow profiles. 1371 

B.  The standard step method calculates a gradually varied flow (GVF) profile by solving the 1372 
energy equation with an iterative procedure. One way of applying the method is by varying 1373 
the flow depths. The calculations start at a point where the depth is known, and the depth is 1374 
changed by small increments or decrements until reaching a specified depth value. For each 1375 
depth increment or decrement, the distance between sections, ∆x, for the given depth change, 1376 
is calculated. 1377 

C.  To develop an equation for the standard step method one may start from equation 3-73, 1378 
re- written as follows: 1379 

𝑧𝑧1 + 𝐸𝐸1 = 𝑧𝑧2 + 𝐸𝐸2 + ℎ𝑓𝑓 (eq. 3-75) 1380 

D.  Using z1-z2 = So∆x and hf = Sf∆x, we can solve for ∆x, the horizontal distance between 1381 
sections (1) and (2): 1382 

∆𝑥𝑥 = 𝐸𝐸1−𝐸𝐸1
𝑊𝑊𝑓𝑓−𝑊𝑊𝑜𝑜

 (eq. 3-76) 1383 

E.  The value of the energy slope to use is based on the Manning’s equation by using the 1384 
average velocity and hydraulic radius for sections (1) and (2): 1385 

𝑉𝑉� = 1
2

(𝑉𝑉1 + 𝑉𝑉2),𝜔𝜔ℎ���� = 1
2

(𝜔𝜔ℎ1 + 𝜔𝜔ℎ2) (eq. 3-77) 1386 

F.  The energy slope is calculated using Manning’s equation as: 1387 

𝑊𝑊𝑓𝑓 = � 𝑛𝑛𝑉𝑉

𝐶𝐶𝑢𝑢𝑅𝑅ℎ
2 3�
�
2

 (eq. 3-78) 1388 

G.  The calculation procedure starts by selecting a depth d1 and then postulating a depth d2 = 1389 
d1 ± ∆d, e.g., you could have d1 = 2.5 ft and d2 = 2.6 ft (with ∆d = 0.1 ft). Then, proceeding 1390 
to calculate the areas (A1, A2), wetted perimeters (P1, P2), hydraulic radii (Rh1, Rh2), velocities 1391 
(V1, V2), specific energies (E1, E2), average hydraulic radius (Rh), average velocity (V), 1392 
energy slope (Sf), and finally the increment ∆x from equation 3-76 is calculated. The 1393 
procedure is repeated then by taking d1 = d2 and postulating a new value of d2. Tables of the 1394 
calculation results are shown in the following example. 1395 

H.  Example – Gradually-varied flow calculation in a rectangular channel 1396 

(1)  A rectangular flume is 5-ft wide (b = 5ft) and carries a flow Q = 60 cfs. The bed 1397 
slope is So = 0.0006, and the Manning’s resistance coefficient is n = 0.012. At a 1398 
certain section the depth is d1 = 3 ft. Find the distance ∆x to the section where the 1399 
depth is 2.5 ft. 1400 

  1401 
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(2)  Solution: 1402 
(i)  Using depth decrements of ∆d = -0.1 ft, the depths d = 3.0 ft, 2.9 ft, 2.8 ft, 2.7 ft, 1403 

2.6 ft, and 2.5 ft are used in the calculation. Calculations are shown for the 1404 
depths, 3.0 ft and 2.9 ft. For a rectangular cross section, the area and wetted 1405 
perimeter are given by A = bd = 5d, P = b + 2d = 5+2d, respectively. Thus: 1406 
• For d1 = 3 ft: 1407 

𝐴𝐴1 = 5 ft × 3 ft = 15𝑓𝑓𝑓𝑓2 1408 
𝐿𝐿1 = 5 + (2 × 3) = 11 𝑓𝑓𝑓𝑓 1409 
𝜔𝜔ℎ1 = 𝐴𝐴1 𝐿𝐿1⁄ = 15 11 =⁄ 1.36 𝑓𝑓𝑓𝑓 1410 
𝑉𝑉1 = 𝑄𝑄 𝐴𝐴1⁄ = 60 𝑐𝑐𝑓𝑓𝑠𝑠 15 𝑓𝑓𝑓𝑓2 = 4 𝑓𝑓𝑓𝑓/𝑠𝑠⁄  1411 
𝐸𝐸1 = 𝑑𝑑1 + 𝑉𝑉12 2𝑔𝑔⁄ = 3 𝑓𝑓𝑓𝑓 + (4 𝑓𝑓𝑓𝑓/𝑠𝑠)2 (2 × (32.2𝑓𝑓𝑓𝑓 𝑠𝑠2))⁄⁄  1412 

= 3.2484 𝑓𝑓𝑓𝑓 1413 
• For d2 = 2.9 ft 1414 

𝐴𝐴1 = 5 ft × 2.9 ft = 14.5𝑓𝑓𝑓𝑓2 1415 
𝐿𝐿1 = 5 + (2 × 2.9) = 10.8 𝑓𝑓𝑓𝑓 1416 
𝜔𝜔ℎ1 = 𝐴𝐴1 𝐿𝐿1⁄ = 14.5 10.8 =⁄ 1.34 𝑓𝑓𝑓𝑓 1417 
𝑉𝑉1 = 𝑄𝑄 𝐴𝐴1⁄ = 60 𝑐𝑐𝑓𝑓𝑠𝑠 14.5 𝑓𝑓𝑓𝑓2 = 4.14 𝑓𝑓𝑓𝑓/𝑠𝑠⁄  1418 
𝐸𝐸1 = 𝑑𝑑1 + 𝑉𝑉12 2𝑔𝑔⁄ = 2.9 𝑓𝑓𝑓𝑓 + (4.14 𝑓𝑓𝑓𝑓/𝑠𝑠)2 (2 × (32.2𝑓𝑓𝑓𝑓 𝑠𝑠2))⁄⁄  1419 

= 3.166 𝑓𝑓𝑓𝑓 1420 
(ii)  The average velocity and hydraulic radius are: 1421 

𝑉𝑉 = (𝑉𝑉1 + 𝑉𝑉2) 2⁄ = 4.07 𝑓𝑓𝑓𝑓/𝑠𝑠 1422 
𝜔𝜔ℎ = (𝜔𝜔ℎ1 + 𝜔𝜔ℎ2) 2⁄ = 1.35 𝑓𝑓𝑓𝑓 1423 

(iii)  The energy slope is calculated as follows: 1424 

𝑊𝑊𝑓𝑓 = �
𝑊𝑊𝑉𝑉

𝐶𝐶𝑢𝑢𝜔𝜔ℎ
2
3�
�

2

= �
(0.012)(4.07)

1.486(1.352 3�
�
2

= 0.000721 1425 

(iv)  Finally, the distance between cross sections is calculated as: 1426 

∆𝑥𝑥 =
𝐸𝐸1 − 𝐸𝐸1
𝑊𝑊𝑓𝑓 − 𝑊𝑊𝑜𝑜

=
3.2484𝑓𝑓𝑓𝑓 − 3.166𝑓𝑓𝑓𝑓
0.000721 − 0.0006

= 680𝑓𝑓𝑓𝑓 1427 

(v)  The standard step solution is presented in the following tables. 1428 
 1429 
Figure 3-39:  Standard step solution example -table 1 1430 

Depth 
d 

Area 
A 

Wetted 
Perimeter 

P 

Hydraulic 
Radius 
R=A/P 

Flow 
Velocity 

V 

Specific 
Energy 

E 

Average 
Hydraulic 

Radius 
Ravg 

Average 
Velocity 

Vavg 

3.000 15.000 11.000 1.364 4.000 3.248 - - 
2.900 14.500 10.800 1.343 4.138 3.166 1.353 4.069 
2.800 14.000 10.600 1.321 4.286 3.085 1.332 4.212 
2.700 13.500 10.400 1.298 4.444 3.007 1.309 4.365 
2.600 13.000 10.200 1.275 4.615 2.931 1.286 4.530 
2.500 12.500 10.000 1.250 4.800 2.858 1.262 4.708 

 1431 
  1432 
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Figure 3-40:  Standard step solution example – table 2 1433 

Depth 
d 

Energy 
Slope 

S 

Spec. En. 
Increment 

ΔE 

Distance 
Increment 

Δx 

Cumulative 
Distance 

x 
3.0 - - - 0 
2.9 0.000721 0.0826 680.11 680.11 
2.8 0.00079 0.0807 425.5 1105.61 
2.7 0.000867 0.0785 293.53 1399.14 
2.6 0.000957 0.076 213.03 1612.15 
2.5 0.001059 0.073 158.91 1771.05 

 1434 
(vi)  The cumulative distance to the section where the depth is 2.5 ft is shown to be 1435 

1771 ft. 1436 

I.  The best results in the standard step method are achieved by using an increment or 1437 
decrement of depth as small as possible. Thus, implementation of the standard step solution 1438 
in spreadsheet software facilitates the calculation, especially for the trapezoidal, parabolic, 1439 
and circular shapes that occur in prismatic open channels. 1440 

J.  To achieve best results in the standard step method, the step computations should be 1441 
carried upstream for subcritical flows and downstream for supercritical flows. 1442 

K.  For analyses of gradually-varied flow in prismatic or natural channels, one can use the 1443 
U.S. Army Corps of Engineers’ Hydrologic Engineering Center’s HEC-RAS software, (RAS 1444 
stands for River Analysis System.). The latest version of HEC-RAS can be downloaded at:  1445 
http://www.hec.usace.army.mil/software/hec-ras/ 1446 

L.  HEC-RAS utilizes an iterative standard step method to solve for gradually varied flow. 1447 
Details on the operation of HEC-RAS are available at the website shown above. 1448 

634.0319  Sediment Transport 1449 

Earth-lined channels may carry sediments if the water velocities are large enough to produce 1450 
erosion of the channel linings. Rivers may carry significant sediment load when the water 1451 
discharge increases. The ability of a river to erode and carry sediments depends on the 1452 
hydraulic characteristics of the stream as well as on the sediment properties. Refer to NEH 1453 
654, Chapter 13, for additional sediment transport information. 1454 

634.0320  Sediment Properties 1455 

A.  The size of sediments can be determined by performing a sieve test on a sample of 1456 
sediments. For very fine sediments a settling test performed in a settling tube may be 1457 
necessary to determine the size distribution of the particles. Typically, sediment size follows 1458 
a log-normal distribution of probabilities, with a median size D50, meaning the size for which 1459 
50% of the sample mass is retained. The diameters D84 and D16 represent the diameters for 1460 
which 15.9% and 84.1% of the sample mass is retained. The standard deviation of the 1461 
logarithms of the diameters is given by: 1462 

𝜎𝜎 = �𝐷𝐷84
𝐷𝐷16

 (eq. 3-79) 1463 

  1464 
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B.  If the diameters of the sediment sample do not follow a log-normal distribution, the 1465 
geometric mean can be used as a representative value of the sediment size: 1466 

𝐷𝐷𝑀𝑀 = �𝐷𝐷85𝐷𝐷16 (eq. 3-80) 1467 

C.  Example - Sediment size data analysis 1468 

(1)  Sediment size data from a sieve analysis can be used to determine the characteristic 1469 
diameters for a sediment sample. This information is useful in the prediction of 1470 
sediment transport discharges in rivers and streams. The table below shows the 1471 
results from a sieve analysis of a sample of sandy sediment: 1472 
 1473 
Figure 3-41:  Sediment data from sieve analysis 1474 

Sieve opening 
(mm) 

Amount 
retained (g) 

0.495 0.85 
0.417 1.56 
0.351 3.08 
0.295 3.82 
0.246 5.35 
0.208 5.69 
0.175 4.31 
0.147 5.06 
0.124 2.37 
0.104 1.16 
0.088 0.21 
0.074 0.12 
Pan 0.04 

 1475 
(2)  Using a probability-logarithmic plot, determine the values of D16, D50, and D84, 1476 

calculate the standard deviation of the logarithms, and the geometric mean. 1477 
  1478 
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(3)  From the table given above, we can produce the following table (figure 3-42) to 1479 
determine the percentage finer than the given sieve size. 1480 
 1481 
Figure 3-42:  Determination of percent finer than given sieve size 1482 

Sieve 
opening 

(mm) 

Weight 
retained (g) 

% weight 
retained 

Cumulative 
% weight 
retained 

Percent 
finer 

0.495 0.85 2.53 2.53 97.470 
0.417 1.56 4.64 7.17 92.830 
0.351 3.08 9.16 16.33 83.670 
0.295 3.82 11.36 27.69 72.310 
0.246 5.35 15.91 43.6 56.400 
0.208 5.69 16.92 60.52 39.480 
0.175 4.31 12.82 73.34 26.660 
0.147 5.06 15.05 88.39 11.610 
0.124 2.37 7.05 95.44 4.560 
0.104 1.16 3.45 98.89 1.110 
0.088 0.21 0.62 99.51 0.490 
0.074 0.12 0.36 99.87 0.130 
pan 0.04 0.12 100.00 0.000 
sum 33.62 100.00 - - 

 1483 
(4)  The probability-logarithmic plot is shown below. The x axis denotes the sieve 1484 

opening, in mm, in the logarithmic scale, while the y axis displays the percentage 1485 
finer in the probability scale. The plot also shows the lines corresponding to 84.1%-, 1486 
50%-, and 15.9%-finer which are used to determine the values of D16, D50, and D84. 1487 
These values are: 1488 

D16 = 0.15 mm, D50 = 0.23 mm, D84 = 0.34 mm 1489 

(5)  The standard deviation of the logarithms of the diameters is: 1490 

𝜎𝜎 = �
𝐷𝐷84
𝐷𝐷16

= �0.34𝑚𝑚𝑚𝑚
0.15𝑚𝑚𝑚𝑚

= 1.505 1491 

(6)  The geometric mean of the diameters is: 1492 

𝐷𝐷𝑀𝑀 = �𝐷𝐷84𝐷𝐷16 = �(0.34𝑚𝑚𝑚𝑚)(0.15𝑚𝑚𝑚𝑚) = 0.225𝑚𝑚𝑚𝑚 1493 

 1494 
  1495 
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Figure 3-43:  Grain size distribution 1496 

 1497 
 1498 

D.  In the analysis of suspended sediment, i.e., those sediment particles that are entrained in 1499 
the moving fluid, it’s important to consider the settling velocity of the sediments. Theoretical 1500 
analysis of settling velocities indicate that the terminal velocity w of a spherical particle of 1501 
diameter D is given by: 1502 

𝑤𝑤 = �4𝑀𝑀𝐷𝐷
3𝐶𝐶𝐷𝐷

�𝜌𝜌𝑠𝑠−𝜌𝜌
𝜌𝜌
� = �4𝑀𝑀𝐷𝐷

3𝐶𝐶𝐷𝐷
(𝑊𝑊𝑠𝑠 − 1) (eq. 3-81) 1503 

E,  Where CD is the drag coefficient, g is the acceleration of gravity, and ρ and ρs are the 1504 
densities of the fluid and of the solid sediment particles, respectively. A typical value used for 1505 
the specific density (gravity) of the solid sediment particles (sand) is Ss =ρs /ρ = 2.65. The 1506 
drag coefficient is related to the Reynolds number of the particle, namely: 1507 

𝜔𝜔𝑒𝑒 = 𝑤𝑤𝐷𝐷
𝑣𝑣

 (eq. 3-82) 1508 

where ν is the viscosity of water. 1509 
  1510 
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F.  For laminar flow, i.e., Re < 2: 1511 

𝐶𝐶𝐷𝐷 = 24
𝑅𝑅𝑒𝑒
�1 + 3

16
𝜔𝜔𝑒𝑒 −

19
1280

𝜔𝜔𝑒𝑒2 + 71
20480

𝜔𝜔𝑒𝑒3 + ⋯� (eq. 3-83) 1512 

G.  The approximation CD = 24/Re, applies for Re < 0.5.  For turbulent flow, with Re < 800, 1513 
the drag coefficient on a spherical particle is approximated by: 1514 

𝐶𝐶𝐷𝐷 = 24
𝑅𝑅𝑒𝑒

(1 + 0.105𝜔𝜔𝑒𝑒0.687) (eq. 3-84) 1515 

H.  Example - Determining settling velocity of spherical sediments 1516 

(1)  Determine the settling velocity of a spherical sediment particle with a diameter D = 1517 
0.23 mm = 7.54×10-4 ft, in water at 60 oF (ν = 1.217×10-5 ft2/s). Use Ss = 2.65 for the 1518 
specific gravity of the solid particles. (This type of information is useful for 1519 
designing sediment settling basins). 1520 

(2)  Solution: 1521 
(i)  Determining the settling velocity, w, is a trial and error solution, since the settling 1522 

velocity is related to a drag coefficient, which is related to the Reynolds number, 1523 
which is, in turn, related to the settling velocity (the parameter to be calculated). 1524 

(ii)  For efficient calculations, an iterative procedure involving the above equations 3-1525 
81 thru 3-84 may be programmed in a spreadsheet to obtain the settling velocity, 1526 
w = 0.0929 ft/s, with Re = 5.76, (in the turbulent regime). 1527 

I.  The results from the previous example apply to spherical particles only. Natural sediments 1528 
may have other shapes; therefore, the effect of that shape must be taken into account when 1529 
calculating the settling velocity. A simple approach consists in multiplying the velocity 1530 
calculated with equation 3-81 by a shape factor ψ: 1531 

𝑤𝑤 = ψ𝑤𝑤𝑠𝑠𝑝𝑝ℎ𝑒𝑒𝑟𝑟𝑒𝑒 =  ψ�4𝑀𝑀𝐷𝐷
3𝐶𝐶𝐷𝐷

�𝜌𝜌𝑠𝑠−𝜌𝜌
𝜌𝜌
� = ψ�4𝑀𝑀𝐷𝐷

3𝐶𝐶𝐷𝐷
(𝑊𝑊𝑠𝑠 − 1) (eq. 3-85) 1532 

J.  Some typical values of the shape factor are provided in the table below. 1533 

 1534 
Figure 3-44:   Shape factors for sediment settling velocity 1535 

Particle shape Shape factor, ψ 
sphere 1.000 
cube-octahedron 0.906 
octahedron 0.846 
cube 0.806 
tetrahedron 0.670 

 1536 

K.  Example – Determination of settling velocity for non-spherical sediments 1537 

(1)  In the previous example, a settling velocity wsphere = 0.0929 ft/s for a spherical 1538 
particle was found. If the particle shape is actually an octahedron, what is the settling 1539 
velocity? 1540 

(2)  Solution - From the table, a shape factor ψ = 0.846 for an octahedron. The settling 1541 
velocity for the particle is: 1542 

𝑤𝑤 =  Ψ ∙ 𝜔𝜔𝑠𝑠𝑝𝑝ℎ𝑒𝑒𝑟𝑟𝑒𝑒 = 0.846 × 0.0929 𝑓𝑓𝑓𝑓 𝑠𝑠⁄ =  0.0786 𝑓𝑓𝑓𝑓/𝑠𝑠 1543 
  1544 
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L.  For additional information on sediment properties and settling velocity calculations, refer 1545 
to: Raudkivi (1976), ASCE (2006), and NEH 654, Chapter 7, Basic Principles of Channel 1546 
Design; Chapter 8, Threshold Channel Design; Chapter 9, Alluvial Channel Design; and 1547 
Chapter 13, Sediment Impact Assessments. 1548 

634.0321  Threshold of Sediment Motion 1549 

A.  Channels may be classified as threshold or alluvial. Sediment passes through a threshold 1550 
channel with little impact on the channel boundary. An alluvial or movable-bed channel is 1551 
more active, with an exchange of sediment between the channel boundary and the flow. 1552 

B.  In a threshold channel, the applied forces of the flow are less than the threshold for 1553 
movement of the boundary material. Equation 3-28 (section 634.0304) provides an 1554 
expression for the average shear stress at the bed of an open channel in uniform conditions, 1555 
and is repeated here: 1556 

𝜏𝜏0 = 𝜔𝜔 ∙ 𝜔𝜔ℎ ∙ 𝑊𝑊0 1557 

C.  Define the shear velocity, v*, as: 1558 

𝑣𝑣∗ = �
𝜏𝜏𝑜𝑜
𝜌𝜌

 (eq. 3-86) 1559 

D.  Although this is not a velocity that can be measured in the flow, the quantity defined 1560 
above has the units of a velocity, and, being related to the bed shear stress, is appropriately 1561 
named the shear velocity. 1562 

E.  The bed shear stress, τo, and the shear velocity, v*, (u* is used interchangeably with v*) can 1563 
be used to define a set of parameters to analyze the threshold of sediment motion in open 1564 
channels. The two parameters to consider are a Reynolds number based on the shear velocity: 1565 

𝑣𝑣∗𝐷𝐷
𝑣𝑣

 (eq. 3-87) 1566 

and a dimensionless shear stress: 1567 
𝜏𝜏𝑜𝑜

(𝜔𝜔𝑠𝑠−𝜔𝜔)𝐷𝐷
= 𝜏𝜏𝑜𝑜

(𝑊𝑊𝑠𝑠−1)𝜔𝜔𝐷𝐷
 (eq. 3-88) 1568 

where ν and ω (“γ” is used interchangeably with “ω”) are the kinematic viscosity and 1569 
specific weight of water, respectively, and D and ωs are the diameter and the specific weight 1570 
of the sediments. The specific gravity of the sediments is Ss = ωs /ω (Ss = 2.65 for sand). 1571 

F.  NEH 654, Chapter 8 (Threshold Channel Design), describes the origin and meaning of the 1572 
Shield’s diagram. This diagram, shown in figure 3-45, and based on the Reynolds number and 1573 
the dimensionless shear stress (equations 3-87 and 3-88), has been extensively used for 1574 
determining the threshold of sediment motion in open channel flow. For a given flow, points 1575 
above the Shields’s curve indicate sediment motion, whereas points below the Shield’s curve 1576 
would show no sediment motion. 1577 

 1578 
  1579 
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Figure 3-45:  Shield’s diagram for determining the threshold of sediment motion in open 1580 
channel flow. 1581 

 1582 
 1583 

G.  Example - Sediment motion threshold analysis using Shield’s diagram 1584 

(1)  A rectangular channel of width b = 10 ft, with Manning’s n = 0.015, and laid on a 1585 
slope So = 0.005, flows at a normal depth do = 0.5 ft. Using Shield’s diagram, 1586 
determine if the flow is able to move sediment of diameter D = 0.20 mm = 6.56×10-4 1587 
ft. Use Ss = 2.65 as the specific gravity of the sediments, and ν = 1.217×10-5 ft2/s for 1588 
the viscosity of water. 1589 

(2)  Solution: 1590 
(i)  The bed shear stress and the shear velocity are calculated as follows: 1591 

𝐴𝐴 = 𝑏𝑏𝑑𝑑0 = 10 𝑓𝑓𝑓𝑓 × 0.5 𝑓𝑓𝑓𝑓 = 5 𝑓𝑓𝑓𝑓2 1592 
𝐿𝐿 = 𝑏𝑏 + 2𝑑𝑑0 = 10 𝑓𝑓𝑓𝑓 + (2 × 0.5 𝑓𝑓𝑓𝑓) = 11 𝑓𝑓𝑓𝑓0 1593 
𝜔𝜔ℎ =  𝐴𝐴 𝐿𝐿⁄ =  5 𝑓𝑓𝑓𝑓2 11 𝑓𝑓𝑓𝑓⁄ = 0.4545 𝑓𝑓𝑓𝑓 1594 
𝜏𝜏0 = 𝜔𝜔𝜔𝜔ℎ𝑊𝑊0 = 62.4 𝑙𝑙𝑏𝑏 𝑓𝑓𝑓𝑓2 × 0.4545 𝑓𝑓𝑓𝑓 × 0.005 = 0.1418 𝑙𝑙𝑏𝑏 𝑓𝑓𝑓𝑓2⁄⁄  1595 

𝑣𝑣∗ = �
𝜏𝜏𝑜𝑜
𝜌𝜌

= �𝑔𝑔𝜔𝜔𝜔𝜔ℎ𝑊𝑊𝑜𝑜
𝜔𝜔

= �𝑔𝑔𝜔𝜔ℎ𝑊𝑊𝑜𝑜 = �32.2
𝑓𝑓𝑓𝑓
𝑠𝑠2

(0.4545𝑓𝑓𝑓𝑓)(0.005) 1596 

      = 0.2705𝑓𝑓𝑓𝑓/𝑠𝑠 1597 
(ii)  The parameters of the Shield’s diagram are calculated as follows: 1598 

𝑣𝑣∗𝐷𝐷
𝑣𝑣

=
(0.2705𝑓𝑓𝑓𝑓/𝑠𝑠)(6.56𝑥𝑥10−4𝑓𝑓𝑓𝑓)

1.217𝑥𝑥10−5
= 14.6 1599 

𝜏𝜏𝑜𝑜
(𝑊𝑊𝑠𝑠 − 1)𝜔𝜔𝐷𝐷

=
0.1418 𝑙𝑙𝑏𝑏

𝑓𝑓𝑓𝑓2

(2.65− 1) �62.4𝑙𝑙𝑏𝑏
𝑓𝑓𝑓𝑓3 � (6.56𝑥𝑥10−4𝑓𝑓𝑓𝑓)

= 2.1 1600 

(iii)  The point (14.6, 2.1) in the Shield’s diagram is well above Shield’s curve; 1601 
therefore, sediment motion will occur for the flow specified above. Normally, 1602 
sediment motion is assured if the shear stress parameter is a factor of “2” above 1603 
the curve. And likewise, if the shear stress parameter is less than half of the curve 1604 
value, then sediment motion will not occur. 1605 

  1606 
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H.  More recent work indicates that Shield’s diagram does not account for the absence of 1607 
stream bed forms, the sporadic entrainment of sediment particles at low shear stress, or the 1608 
effects of non-uniform bed material. See NEH 654.0804(b) to calculate a refined allowable 1609 
shear stress parameter. 1610 

I.  Grass linings have been widely used to protect the erodible soil boundaries of waterways, 1611 
floodways, and reservoir auxiliary spillways. An effective stress design approach is provided 1612 
in the basic reference USDA AH 667. Waterway Design Tool software has been developed to 1613 
design grassed waterways, following the procedures of AH 667. Refer to NEH Part, 650, 1614 
Chapter 7, Grassed Waterways, for example designs of trapezoidal and parabolic-shaped 1615 
grassed waterways, using an extensive set of design tables. Also, refer to NEH 654.0806 for 1616 
more information and an example problem on the threshold design of a grass-lined channel. 1617 

634.0322  Suspended Sediment Load 1618 

A.  Once sediment particles are moving, the finest particles may be entrained in the flow and 1619 
kept in suspension by turbulent motions while being carried downstream by the bulk flow. 1620 
The sediment thus transported is known as the suspended sediment load. 1621 

B.  The concentration C(y) of suspended sediment, in units of sediment mass per unit liquid 1622 
mass, can be calculated using the following equation: 1623 

𝐶𝐶(𝑦𝑦)
𝐶𝐶𝑎𝑎

= ��𝑑𝑑−𝑦𝑦
𝑑𝑑−𝑎𝑎

� 𝑎𝑎
𝑦𝑦
�
2

 (eq. 3-89) 1624 

where y is the distance from the channel bed, Ca is the concentration measured at a 1625 
reference level y = a close to the channel bed, d is the flow depth, and z is a parameter 1626 
calculated as: 1627 

𝑧𝑧 = 𝑤𝑤
𝛽𝛽κ𝑣𝑣∗

 (eq. 3-90) 1628 

C.  In this parameter, w is the settling velocity of the sediment particles, β is the ratio of the 1629 
sediment transport coefficient to the turbulent kinematic viscosity in the flow, κ is von 1630 
Karman’s constant (related to the viscous stress model commonly used in open channel 1631 
flow), and v*   is the shear velocity. The value of β is close to 1.0 for fine sediments and 1632 
decreases as the particle size increases. Von Karman’s constant has been measured to be k = 1633 
0.40 in clear water, and lower for sediment-laden water. 1634 

D.  If we measure the concentration at the midpoint of the depth, i.e., Cmd = C(d/2), equation 1635 
3-89 can be written as follows (a = d/2): 1636 

𝐶𝐶(𝑦𝑦)
𝐶𝐶𝑚𝑚𝑑𝑑

= �𝑑𝑑−𝑦𝑦
𝑦𝑦
�
2
 (eq. 3-91) 1637 

E.  The suspended sediment discharge Gss (mass per unit volume) in a rectangular channel of 1638 
width b, can be calculated by integrating the product C(y)⋅v(y) over the depth of flow, with 1639 
v(y) being the flow velocity distribution in the vertical: 1640 

Gss = ∫A 
C( y) ⋅ v( y) ⋅ dA = ∫A 

C( y) ⋅ v( y) ⋅ b ⋅ dy (eq. 3-92) 1641 
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F.  A typical velocity distribution in turbulent open channel flow is the logarithmic 1643 
distribution given by: 1644 

𝑣𝑣(𝑦𝑦) = 𝑉𝑉 + 𝑣𝑣∗
κ
�1 + 𝑙𝑙𝑊𝑊 �𝑦𝑦

𝑑𝑑
�� (eq. 3-93) 1645 

where V is the mean flow velocity. The point near the channel bed where the velocity 1646 
becomes zero is located at a distance yo from the channel bed. The value of yo can be 1647 
found from the above equation by making v(yo) = 0, resulting in: 1648 

𝑦𝑦𝑜𝑜 = (𝑑𝑑)𝑠𝑠𝑥𝑥𝑓𝑓 �− �κ𝑉𝑉
𝑣𝑣∗
� + 1� (eq. 3-94) 1649 

G.  This value becomes the lower limit for the integral of equation 3-92, the upper limit being 1650 
the depth of flow d. The suspended sediment discharge per unit width can be calculated as: 1651 

𝑔𝑔𝑠𝑠𝑠𝑠 = 𝐺𝐺𝑠𝑠𝑠𝑠
𝑏𝑏

= ∫ 𝐶𝐶(𝑦𝑦)𝑣𝑣(𝑦𝑦)𝑑𝑑𝑦𝑦 =𝑑𝑑
𝑦𝑦𝑜𝑜

∫ 𝐶𝐶𝑚𝑚𝑑𝑑 �
𝑑𝑑−𝑦𝑦
𝑦𝑦
�
2𝑑𝑑

𝑦𝑦𝑜𝑜
�𝑣𝑣∗

κ
�1 + 𝑙𝑙𝑊𝑊 �𝑦𝑦

𝑑𝑑
��� 𝑑𝑑𝑦𝑦  (eq. 3-95) 1652 

H.  A dimensionless unit sediment discharge can be obtained by dividing gss by the product 1653 
qCmd, where q = Vd is the unit water discharge (or discharge per unit width). This 1654 
dimensionless unit sediment discharge can be written as: 1655 

𝑔𝑔𝑠𝑠𝑠𝑠∗ = 𝑀𝑀𝑠𝑠𝑠𝑠
𝑞𝑞𝐶𝐶𝑚𝑚

= �1 + 𝑣𝑣∗
κ𝑉𝑉
� 𝐼𝐼1�𝑧𝑧, η𝑜𝑜� + 𝑣𝑣∗

κ𝑉𝑉
𝐼𝐼2(𝑧𝑧, η𝑜𝑜) (eq. 3-96) 1656 

where ηo = yo/d, and the integrals I1(z, ηo) and I2(z, ηo), are calculated as: 1657 

𝐼𝐼1�𝑧𝑧, η𝑜𝑜� = ∫ �1−η

η
�
𝑧𝑧
𝑑𝑑η

1
η𝑜𝑜

 (eq. 3-97) 1658 

𝐼𝐼1�𝑧𝑧, η𝑜𝑜� = ∫ �1−η

η
�
𝑧𝑧

ln (η)1
η𝑜𝑜

𝑑𝑑η (eq. 3-98) 1659 

I.  Example – Suspended sediment discharge calculation 1660 

(1)  Consider a rectangular stream of width b = 20 ft, laid on a slope So = 0.00025, with 1661 
Manning’s n = 0.025, flows at a normal depth do = d = 5.0 ft. The mid-depth 1662 
concentration is measured to be Cmd = 0.05 gm/lt =0.00312 lb/ft3. The settling 1663 
velocity of the particles has been calculated to be w = 0.12 ft/s. Calculate the 1664 
suspended sediment discharge Gss, assuming that the parameter β = 0.88. 1665 

(2)  Solution: 1666 
(i)  Proceeding to calculate the mean velocity and shear velocity: 1667 

𝐴𝐴 = 𝑏𝑏𝑑𝑑0 = 20 𝑓𝑓𝑓𝑓 × 5 𝑓𝑓𝑓𝑓 = 100 𝑓𝑓𝑓𝑓2 1668 
𝐿𝐿 = 𝑏𝑏 + 2𝑑𝑑0 = 20 𝑓𝑓𝑓𝑓 + (2 × 5 𝑓𝑓𝑓𝑓) = 30 𝑓𝑓𝑓𝑓0 1669 
𝜔𝜔ℎ =  𝐴𝐴 𝐿𝐿⁄ =  100 𝑓𝑓𝑓𝑓2 30 𝑓𝑓𝑓𝑓⁄ = 3.33 𝑓𝑓𝑓𝑓 1670 

𝑉𝑉 =
𝐶𝐶𝑢𝑢
𝑊𝑊
𝜔𝜔ℎ
2
3� �𝑊𝑊𝑜𝑜 =

1.486
0.025

(3.33)2 3� √0.00025 = 2.097𝑓𝑓𝑓𝑓/𝑠𝑠 1671 

𝑣𝑣∗ = �
𝜏𝜏𝑜𝑜
𝜌𝜌

= �𝑔𝑔𝜔𝜔𝜔𝜔ℎ𝑊𝑊𝑜𝑜
𝜔𝜔

= �𝑔𝑔𝜔𝜔ℎ𝑊𝑊𝑜𝑜 = �32.2
𝑓𝑓𝑓𝑓
𝑠𝑠2

(3.33𝑓𝑓𝑓𝑓)(0.00025) 1672 

      = 0.1638𝑓𝑓𝑓𝑓/𝑠𝑠 1673 
  1674 



D R
 A

 F T
Title 210 – National Engineering Handbook 

(210-634-H, 1st Edition, DRAFT Mar 2021) 
634-3.59 

(ii)  The lower limit in the integral of equation 3-94 is calculated wth κ= 0.40 as: 1675 

𝑦𝑦𝑜𝑜 = (𝑑𝑑)𝑠𝑠𝑥𝑥𝑓𝑓 �−�
κ𝑉𝑉
𝑣𝑣∗
� + 1� = (5𝑓𝑓𝑓𝑓)𝑠𝑠𝑥𝑥𝑓𝑓 �−�

(0.4)2.097𝑓𝑓𝑓𝑓
𝑠𝑠

0.1638𝑓𝑓𝑓𝑓
𝑠𝑠

� + 1� 1676 

= 0.0109𝑓𝑓𝑓𝑓 1677 
while the lower limit of the integrals in equations 3-97 and 3-98 is: 1678 

ηo = yo/d = 0.0109ft/5ft = 0.00219 1679 

(iii)  The parameter z from equation 3-90 is calculated with κ = 0.40 as follows: 1680 

𝑧𝑧 =
𝑤𝑤

𝛽𝛽κ𝑣𝑣∗
=

0.12𝑓𝑓𝑓𝑓/𝑠𝑠
(0.88)(0.40)0.1638𝑓𝑓𝑓𝑓/𝑠𝑠

= 2.081 1681 

(iv)  The integrals in equations 3-97 and 3-98 can be calculated by using numerical 1682 
integration in a spreadsheet, which calculates the integrals, I1 = 677.1623 and I2 = 1683 
-3553.72. 1684 

(v)  The dimensionless unit suspended sediment discharge is calculated with equation 1685 
3-96: 1686 

𝑔𝑔𝑠𝑠𝑠𝑠∗ = �1 +
0.1638

0.40(2.097)�
677.1623 +

0.1638
0.42.097

− 3553.72 = 115.52 1687 

(vi)  The unit suspended sediment discharge is: 1688 

𝑔𝑔𝑠𝑠𝑠𝑠 = 𝑔𝑔𝑠𝑠𝑠𝑠∗ 𝑞𝑞𝐶𝐶𝑚𝑚 = (115.52)
(2.097)100

2
0.00312 =

3.78𝑙𝑙𝑏𝑏
𝑠𝑠

/𝑓𝑓𝑓𝑓 1689 

(vii)  The suspended sediment discharge is: 1690 
𝐺𝐺𝑠𝑠𝑠𝑠 = 𝑔𝑔𝑠𝑠𝑠𝑠(20) = 75.58𝑙𝑙𝑏𝑏/𝑠𝑠 1691 

634.0323  Bed Sediment Load 1692 

A.  Coarser sediment particles carried by a stream may move by rolling and saltation along 1693 
the bed of the channel constituting what is known as bed sediment load. Refer to NEH 654, 1694 
Chapter 9, for bed sediment load formulae and where to apply. Using the Meyer-Peter-Muller 1695 
formula due to its simplicity:  1696 

𝑔𝑔𝐵𝐵 = 8𝜔𝜔�𝑔𝑔𝐷𝐷3 � 𝑊𝑊𝑠𝑠
𝑊𝑊𝑠𝑠−1

� �𝑅𝑅ℎ𝑊𝑊𝑜𝑜
𝐷𝐷

� 𝑘𝑘
𝑘𝑘′
�
3
2� − 0.047(𝑊𝑊𝑠𝑠 − 1�

3
2�

 (eq. 3-99) 1697 

B.  In this formula, gB is the bed sediment discharge (mass per unit time) per unit width of a 1698 
rectangular channel, ω is the specific weight of water, g is the acceleration of gravity, D = 1699 
D50 is the sediment particle diameter, Ss is the specific gravity of sediments (e.g., Ss = 2.65 for 1700 
sand), Rh is the hydraulic radius (which can be taken as Rh = d, the depth of flow, for a wide 1701 
channel), and So is the bed slope. The coefficients k and k’ are Stickler coefficients defined by 1702 
the following equations: 1703 

𝑉𝑉 = 𝑘𝑘𝜔𝜔ℎ
2
3� �𝑊𝑊𝑜𝑜 = 𝐶𝐶𝑢𝑢

𝑛𝑛
𝜔𝜔ℎ
2
3� �𝑊𝑊𝑜𝑜 (eq. 3-100) 1704 

𝑉𝑉 = 𝑘𝑘′𝜔𝜔ℎ
2
3� √𝑊𝑊′ = 𝐶𝐶𝑢𝑢

𝑛𝑛
𝜔𝜔ℎ
2
3� √𝑊𝑊′ (eq. 3-101) 1705 
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C.  The first expression for V is Manning’s equation with the coefficient k accounting for the 1707 
overall channel resistance, namely, bed form resistance (e.g., dunes, bars) and grain friction 1708 
resistance. This velocity is defined in terms of the bed slope So. The second expression for V 1709 
is Manning’s equation with the coefficient k’ accounting only for the grain friction resistance. 1710 
This equation uses a slope S’ that corresponds to the grain friction resistance. Thus, S’ can be 1711 
defined as a grain-friction energy slope. 1712 

D.  The ratio k/k’, that appears in the Meyer-Peter-Muller equation, can take values between 1713 
0.5 and 1.0, with k/k’ = 1.0 when no bed forms are present, and k/k’ = 0.5 when strong bed 1714 
forms are present. The coefficient k’ can be calculated, using metric units, as: 1715 

𝑘𝑘′ = 26𝑚𝑚1 3� /𝑠𝑠

𝐷𝐷90
1 6�

 (eq. 3-102) 1716 

where D90 is the diameter of bed sediments for which 90% of the material is finer. In the 1717 
English system of units the equation to use is: 1718 

𝑘𝑘′ = 38.63𝑓𝑓𝑓𝑓1 3� /𝑠𝑠

𝐷𝐷90
1 6�

 (eq. 3-13) 1719 

E.  Example – Bed sediment load rate calculation 1720 

(1)  A rectangular stream of width b = 10 ft, laid on a slope So = 0.00025, with 1721 
Manning’s n = 0.025, flows at a normal depth do = d = 1.5 ft. The sediment particles 1722 
specific gravity is Ss = 2.65, and the diameters D50 = D = 0.20 mm = 0.20×10 -3 m = 1723 
6.56×10 -4 ft, and D90 = 0.28 mm = 0.28×10 -3 m. Determine the bed sediment load 1724 
rate (lb/s) for this stream. 1725 

(2)  Solution: 1726 
(i)  The calculations proceed as follows: 1727 

𝐴𝐴 = 𝑏𝑏𝑑𝑑0 = 10 𝑓𝑓𝑓𝑓 × 1.5 𝑓𝑓𝑓𝑓 = 1.5 𝑓𝑓𝑓𝑓2 1728 
𝐿𝐿 = 𝑏𝑏 + 2𝑑𝑑0 = 10 𝑓𝑓𝑓𝑓 + (2 × 1.5 𝑓𝑓𝑓𝑓) = 13 𝑓𝑓𝑓𝑓0 1729 
𝜔𝜔ℎ =  𝐴𝐴 𝐿𝐿⁄ =  10 𝑓𝑓𝑓𝑓2 13 𝑓𝑓𝑓𝑓⁄ = 1.15 𝑓𝑓𝑓𝑓 1730 

𝑘𝑘′ =
26𝑚𝑚1

3� /𝑠𝑠

𝐷𝐷90
1
6�

=
26

(0.28𝑥𝑥10−3)1 6�
= 101.65 1731 

𝑘𝑘 =
𝐶𝐶𝑢𝑢
𝑊𝑊

=
1.486
0.025

= 59.44 1732 

𝑘𝑘
𝑘𝑘′

= 0.5847 1733 

𝑔𝑔𝐵𝐵 = 8𝜔𝜔�𝑔𝑔𝐷𝐷3 �
𝑊𝑊𝑠𝑠

𝑊𝑊𝑠𝑠 − 1� �
𝜔𝜔ℎ𝑊𝑊𝑜𝑜
𝐷𝐷 �

𝑘𝑘
𝑘𝑘′�

3
2�

− 0.047(𝑊𝑊𝑠𝑠 − 1�

3
2�

= 𝐾𝐾1𝐾𝐾2 1734 
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with (note that K1 and K2 are used only to aid computation) 1736 

𝐾𝐾1 = (8) �62.4
𝑙𝑙𝑏𝑏
𝑓𝑓𝑓𝑓3�

�32.2
𝑓𝑓𝑓𝑓
𝑠𝑠2

(6.56𝑥𝑥10−4𝑓𝑓𝑓𝑓)3 �
2.65
1.65�

=

0.07644𝑙𝑙𝑏𝑏
𝑓𝑓𝑓𝑓
𝑠𝑠

 1737 

𝐾𝐾2 = �
1.15𝑓𝑓𝑓𝑓

6.56𝑥𝑥10−4
(0.5847)3 2� − 0.047(2.65 − 1�

3
2�

= 0.0407 1738 

𝑔𝑔𝐵𝐵 = 𝐾𝐾1𝐾𝐾2 = �

0.07644𝑙𝑙𝑏𝑏
𝑓𝑓𝑓𝑓
𝑠𝑠 � (0.0407) =

0.0031𝑙𝑙𝑏𝑏
𝑓𝑓𝑓𝑓
𝑠𝑠

 1739 

(ii)  For the width b = 10 ft, the bed sediment load rate is: 1740 
𝐺𝐺𝐵𝐵 = 𝑔𝑔𝐵𝐵𝑏𝑏 = 0.0031 𝑙𝑙𝑏𝑏 𝑓𝑓𝑓𝑓 𝑠𝑠⁄ × 10 𝑓𝑓𝑓𝑓 = 0.031 𝑙𝑙𝑏𝑏/𝑠𝑠⁄  1741 

634.0324  Scour and Deposition in Channels 1742 

A.  A channel in equilibrium, from the point of view of sediment transport, is one which is 1743 
not degrading (losing bed material) nor aggrading (gaining bed material). A decrease in the 1744 
sediment supply to the channel may cause degradation. For example, if a dam has been built 1745 
in a stream that typically carries sediment, the water downstream from the dam may contain 1746 
much less sediment than before and, most likely, would pick up local materials to make up 1747 
for the loss. On the other hand, an increase in the sediment supply to a channel may cause 1748 
aggradation as the channel may not be able to carry the additional supply. Refer to NEH 654, 1749 
Chapter 13, for additional information on local scour calculations. 1750 

B.  Consider a degrading channel, of infinite length, as consequence of the building of a dam. 1751 
This situation is depicted in the following figure. 1752 

 1753 
Figure 3-46:  Channel bed degradation downstream of a dam due to reduction in sediment 1754 
supply. 1755 

 1756 
 1757 
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C.  Let So be the slope of the original bed position and S∞ be the slope of the final bed 1759 
position. The solution that describes the change in the bed elevation with respect to time t and 1760 
space x, measured from the dam foot, is given by (see Raudkivi, 1976): 1761 

𝑧𝑧(𝑥𝑥, 𝑓𝑓) = (𝑊𝑊∞ − 𝑊𝑊𝑜𝑜) �2�𝐾𝐾𝑓𝑓
𝜋𝜋
𝑠𝑠𝑥𝑥𝑓𝑓 � 𝑥𝑥

2

4𝐾𝐾𝑓𝑓
� − 𝑥𝑥(𝑠𝑠𝑟𝑟𝑓𝑓𝑐𝑐) � 𝑥𝑥

2√𝐾𝐾𝑓𝑓
�� (eq. 3-104) 1762 

where K is a parameter defined in terms of an equation of flow (the Chezy equation) and the 1763 
sediment discharge expression (equation 3-107), and erfc is the complementary error function 1764 
defined as: 1765 

erfc = 1 − erf (θ ) = 1 − ∫0 
exp (−ξ ) dξ (eq. 3-105) 1766 

and erf is the error function. 1767 

D.  The Chezy equation for the flow: 1768 

𝑉𝑉 = 𝐶𝐶�𝑑𝑑𝑊𝑊𝑓𝑓 (eq. 3-106) 1769 
where C is the Chezy coefficient, d is the flow depth (the equation is given for a wide 1770 
channel), and Sf   is the energy slope (slope of the energy line). 1771 

E.  The sediment discharge expression is given in terms of the flow velocity V as an empirical 1772 
equation: 1773 

𝑔𝑔𝑠𝑠 = 𝑡𝑡𝑉𝑉𝑏𝑏 (eq. 3-107) 1774 
where gs  is the unit sediment discharge (sediment discharge per unit width), and a and b 1775 
are constant values. The parameter K in equation 3-104 is calculated as: 1776 

𝐾𝐾 = 𝐶𝐶2𝑏𝑏𝑞𝑞𝑎𝑎
3
2� 𝑀𝑀𝑠𝑠

1−3
𝑏𝑏�

3(1−λ)
 (eq. 3-108) 1777 

where q = Vd is the water discharge per unit width, λ is the porosity of the bed sediments 1778 
(typical value, λ = 0.40), gs, a, and b are defined in equation 3-107, and C is the Chezy 1779 
coefficient (see equation 3-106). Porosity of soils or sediments is defined as the ratio of 1780 
the volume of voids in the material to the total volume (solids + voids). 1781 

F.  Defining the amount of degradation about the dam as: 1782 

𝑧𝑧𝑜𝑜 = 2(𝑊𝑊∞ − 𝑊𝑊𝑜𝑜)�𝐾𝐾𝑓𝑓
𝜋𝜋

 (eq. 3-109) 1783 

G.  With this definition, equation 3-104 can be written to give a dimensionless bed elevation: 1784 

𝑧𝑧
𝑧𝑧𝑜𝑜

= exp �− 𝑥𝑥2

4𝐾𝐾𝑓𝑓
� − 𝑥𝑥

2
� 𝜋𝜋
𝐾𝐾𝑓𝑓
𝑠𝑠𝑟𝑟𝑓𝑓𝑐𝑐 � 𝑥𝑥

2√𝐾𝐾𝑓𝑓
� (eq. 3-110) 1785 

H.  Defining the initial and final sediment supply as: 1786 

𝑔𝑔𝑠𝑠𝑜𝑜 = 𝐾𝐾(1 − λ)𝑊𝑊𝑜𝑜 (eq. 3-111) 1787 
and, 1788 

𝑔𝑔𝑠𝑠∞ = 𝐾𝐾(1 − λ)𝑊𝑊∞ (eq. 3-112) 1789 

I.  The parameter zo can be written as: 1790 

𝑧𝑧𝑜𝑜 = 2(𝑀𝑀𝑠𝑠∞−𝑀𝑀𝑠𝑠𝑜𝑜)
1−λ

� 𝑓𝑓
𝜋𝜋𝐾𝐾

 (eq. 3-113) 1791 
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J.  Notice that the solution provided by equation 3-104, applies equally to degradation 1793 
(gso>gs∞) or aggradation (gso<gs∞). 1794 

K.  Example – Bed aggradation 1795 

(1)  A laboratory flume is set at a slope So = 0.00356 and water flows at a uniform depth 1796 
do = 2 inches = 0.167 ft, and a velocity V = 1.31 ft/s. Sediment is supplied into the 1797 
flow at a rate gso = 1.598×10-4 ft2/s until the channel reaches equilibrium. The 1798 
estimated value of the parameter K is K = 0.0748 ft2/s, and the porosity of sediments 1799 
is λ = 0.40. Without changing any of the flow conditions, the sediment supply rate is 1800 
increased to gs∞   = 7.99×10-4 ft2/s, so that the channel bed starts aggrading. (a) 1801 
Compute the maximum amount of aggradation after t = 1 hr = 3600 s, and (b) 1802 
compute the amount of aggradation at a point x = 2.0 ft downstream of the point of 1803 
sediment injection, after t = 1 hr = 3600 s. Assume that the channel is of infinite 1804 
length. 1805 

(2)  Solution; 1806 
(i)  The maximum amount of aggradation at any given time occurs at position x = 0, 1807 

and is given by equation 3-113: 1808 

𝑧𝑧𝑜𝑜 =
2(𝑔𝑔𝑠𝑠∞ − 𝑔𝑔𝑠𝑠𝑜𝑜)

1 − λ
�
𝑓𝑓
𝜋𝜋𝐾𝐾

 1809 

𝑧𝑧𝑜𝑜 =
2 �7.99𝑥𝑥10−4 𝑓𝑓𝑓𝑓

2
𝑠𝑠� − 1.598𝑥𝑥10−4 𝑓𝑓𝑓𝑓

2
𝑠𝑠� �

1 − λ �
3600𝑠𝑠

(3.1416)0.0748𝑓𝑓𝑓𝑓
2
𝑠𝑠�
 1810 

      = 0.2637𝑓𝑓𝑓𝑓 = 3.16 𝑖𝑖𝑊𝑊 1811 
 1812 

(ii)  To find the aggradation elevation for x = 2 ft and t = 3600 hr, use equation 3-1813 
110: 1814 

𝑧𝑧 = 𝑧𝑧𝑜𝑜 �𝑠𝑠𝑥𝑥𝑓𝑓 �−
𝑥𝑥2

4𝐾𝐾𝑓𝑓�
−
𝑥𝑥
2
�
𝜋𝜋
𝐾𝐾𝑓𝑓

𝑠𝑠𝑟𝑟𝑓𝑓𝑐𝑐 �
𝑥𝑥

2√𝐾𝐾𝑓𝑓
�� 1815 

(iii)  The value of the function erfc may be found by use of an appropriate 1816 
spreadsheet. The argument of the function for this example is: 1817 

𝑥𝑥
2√𝐾𝐾𝑓𝑓

=
2.0𝑓𝑓𝑓𝑓

2�0.0748𝑓𝑓𝑓𝑓
2
𝑠𝑠� 3600𝑠𝑠

= 0.0609 1818 

(iv)  The spreadsheet gives erfc(0.0609) = 0.931367. The required aggradated 1819 
elevation is: 1820 

𝑧𝑧 = 0.2637𝑓𝑓𝑓𝑓 �𝑠𝑠𝑥𝑥𝑓𝑓�−
(2.0𝑓𝑓𝑓𝑓)2

(4)0748𝑓𝑓𝑓𝑓
2
𝑠𝑠� )3600𝑠𝑠

�  1821 

−
2𝑓𝑓𝑓𝑓

2 �
3.1416

0.0748𝑓𝑓𝑓𝑓
2
𝑠𝑠� 3600𝑠𝑠

(0.931367)� 1822 

𝑧𝑧 = 0.2362𝑓𝑓𝑓𝑓 = 2.83𝑖𝑖𝑊𝑊 1823 
  1824 
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L.  Example – Bed degradation downstream of dam. 1825 

(1)  The initial slope of a river channel is So = 0.0094. It is estimated that, after 1826 
construction of a dam, the resulting slope will be S∞ = 0.0020. The parameter K is 1827 
estimated to be 10750 ft2/day. The initial bed elevation at the dam site is zs = 1500 ft 1828 
above mean sea level. Compute the expected bed elevation at a number of points 1829 
along the stream channel after, (a) two months (60 days), and (b) 2 years (730 days) 1830 
of the construction of the dam. 1831 

(2)  Solution: 1832 
(i)  The elevation at the dam site for t = 60 days, is calculated as: 1833 

𝑧𝑧𝑜𝑜 = 2(0.0020− 0.0094)�
10750 𝑓𝑓𝑓𝑓2

𝑑𝑑𝑡𝑡𝑦𝑦 60𝑑𝑑𝑡𝑡𝑦𝑦

3.1416
= 6.71𝑓𝑓𝑓𝑓 1834 

(ii)  And for t = 730 days, the elevation zo is calculated as: 1835 

𝑧𝑧𝑜𝑜 = 2(0.0020− 0.0094)�
10750 𝑓𝑓𝑓𝑓2

𝑑𝑑𝑡𝑡𝑦𝑦 730𝑑𝑑𝑡𝑡𝑦𝑦

3.1416
 =  −23.39𝑓𝑓𝑓𝑓 1836 

(iii)  In the following table and plot, the degradation elevations z for t = 0, t = 60 day, 1837 
and t = 730 day, for a number of values of “x” are presented. The bed elevation 1838 
is calculated as follows: 1839 

𝐵𝐵𝑠𝑠𝑑𝑑 𝑠𝑠𝑙𝑙𝑠𝑠𝑣𝑣𝑡𝑡𝑓𝑓𝑖𝑖𝑜𝑜𝑊𝑊(𝑥𝑥) = 𝐵𝐵𝑠𝑠𝑑𝑑 𝑠𝑠𝑙𝑙𝑠𝑠𝑣𝑣𝑡𝑡𝑓𝑓𝑖𝑖𝑜𝑜𝑊𝑊(𝑥𝑥 = 0) + 𝑧𝑧(𝑥𝑥) − 𝑠𝑠0(𝑥𝑥) 1840 
(iv)  The calculations and plot of the data were performed with an appropriate 1841 

spreadsheet. 1842 
 1843 
Figure 3-47:  Expected bed elevation computations for bed degradation 1844 
downstream of dam 1845 

 1846 
 1847 
 1848 

  1849 
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Figure 3-48:  Expected bed elevation along stream channel downstream for bed 1850 
degradation downstream of dam 1851 

 1852 
 1853 

M.  In some instances, a control on the downstream end of a channel of length L may exist 1854 
such that the bed elevation at the downstream end remains constant even as the channel 1855 
aggrades or degrades. If the starting bed slope is So and the ending bed slope is S∞, the 1856 
elevation of the channel bed z(x,t) is given by the following equation (see Raudkivi, 1976): 1857 

𝑧𝑧(𝑥𝑥, 𝑓𝑓) = 1858 

S∞(𝐿𝐿 − 𝑥𝑥) + 8𝐿𝐿(𝑊𝑊𝑜𝑜−𝑊𝑊∞)
𝜋𝜋2

∑ 1
(2𝑘𝑘−1)2

exp �(2𝑘𝑘−1)2𝜋𝜋2𝐾𝐾𝑓𝑓
4𝐿𝐿2

�∞
𝑘𝑘=1 cos �(2𝑘𝑘−1)𝜋𝜋𝑥𝑥

2𝐿𝐿
� (eq. 3-114) 1859 

The coefficient K is calculated as in equation 3-108. 1860 

 1861 
N.  Example – Bed degradation with constant downstream elevation 1862 

(1)  This example uses the same data as in the previous example, i.e., So = 0.0094, S∞ = 1863 
0.0020, and K = 10,750 ft2/day; however, a control of constant elevation occurs at the 1864 
downstream end of a channel length L = 1.5 mi = 7920 ft. The initial bed elevation at 1865 
the dam site is zs = 1,500 ft. Compute the expected bed elevation at a number of 1866 
points along the river channel after, (a) two months (60 days), (b) 2 years (730 days), 1867 
and (c) 10 years (3650 days) of the construction of the dam. (Note: the value of S∞ 1868 
can be estimated from the terrain geometry and selected to produce a channel with a 1869 
mild slope.) 1870 

  1871 
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(2)  Solution: 1872 
(i)  The calculations and plot of the data, shown in figure 3-49, were performed with 1873 

an appropriate spreadsheet. 1874 
 1875 
Figure 3-49:  Expected bed elevation with a constant downstream elevation 1876 

 1877 
 1878 
 1879 
Figure 3-50:  Expected bed elevation along stream channel with a constant 1880 
downstream elevation 1881 

 1882 
 1883 
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