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Part 634 – Hydraulics 29 

Chapter 2 - Hydrostatics 30 

634.0200  General 31 

Hydrostatics refers to the study of water (and other liquids) at rest. Such is the case, for 32 
example, of water contained in a storage tank with no flow in or out. Subjects of interest in 33 
hydrostatics include determination of pressures in a fluid, instruments for measuring pressure, 34 
calculation of forces on submerged surfaces (e.g., on gates or tank walls), and study of 35 
buoyancy. 36 

634.0201  Hydrostatic Pressure Relationships 37 

A.  Pressure is defined as the force per unit area that a fluid (liquid or gas) exerts on a surface 38 
submerged in the fluid. The pressures discussed here are those within a body of water at rest.  39 

(1)  Consider, for example, a water tank as shown in the figure 2-1 below. 40 
 41 
Figure 2-1:  Schematic of pressure measurement in a liquid 42 

 43 
 44 
A small probe of area A is introduced at a point in the tank as shown. If the force that 45 
the water exerts on the probe tip is F, then the pressure at that point is: 46 

𝑝𝑝 =  𝐹𝐹
𝐴𝐴
 (eq. 2-1) 47 

where: p = pressure 48 
F = force 49 
A = area 50 

(2)  Changing the orientation of the probe’s tip at the same point, does not change the 51 
force exerted by the water on the tip. Thus, the pressure at any given point does not 52 
change with the orientation of the surface acted upon. Pressure is said to be isotropic, 53 
i.e., it is independent of the orientation in which it is measured. 54 

(3)  The table in figure 2-2 lists some of the most commonly used units of pressure in the 55 
English System (ES) and International System (SI). Notice that pressure can also be 56 
expressed in terms of the height of a liquid column as shown below. In this table, H20 57 
and Hg are the chemical symbols of water and mercury, respectively. 58 

  59 
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Figure 2-2:  Commonly used units of pressure 60 
Unit of Pressure Definition or Equivalent 

Basic Units 
psf 1 lb/ft2  = 0.006944 psi = 47.88 Pa 
psi 1 lb/in2 = 144 psf = 6,894.76 Pa 
Pa (Pascal) 1 N/m2 = 0.02088 psf = 0.000145 psi 

Other Units 
kPa (kilo Pascal) 1,000 Pa 
MPa (mega Pascal) 1,000 kPa = 1,000,000 Pa 
bar 14.50 psi = 100,000 Pa 
mb (millibar) 0.001 bar = 0.014504 psi = 100 Pa 
atm (atmosphere) 14.7 psi = 101,325 Pa 

Height of Liquid Column 
1 m H20 1.4209 psi = 9796.85 Pa 
1 ft H20 0.4331 psi = 2986.08 Pa 
1 in H20 0.03609 psi = 248.84 Pa 
1 mm Hg 0.01934 psi = 133.32 Pa 
1 in Hg 0.4912 psi = 3,386.39 Pa 

 61 
(4)  Pressure, within a liquid at rest, increases linearly with depth. Referring to figure 2-3, 62 

if the pressure at elevation z0 is known to be p0, then the pressure p at elevation z, is 63 
given by the hydrostatic law: 64 

𝑝𝑝 = 𝑝𝑝0 + 𝜔𝜔𝜔𝜔𝜔𝜔 65 

where ꞷ is the specific weight of the liquid, and Δz = z-z0 is the difference in 66 
elevation of the two points of interest. The elevations z and z0 are measured from any 67 
common horizontal level or datum. 68 
 69 
Figure 2-3:  Pressures within a liquid at rest 70 

 71 
  72 
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B.  Atmospheric pressure 73 

Atmospheric pressure refers to the pressure exerted by the weight of the air in the 74 
atmosphere. As there is greater weight of air above lower versus higher levels on the 75 
surface of the earth, atmospheric pressure decreases as elevation increases. Exhibit 5 76 
shows the typical values of atmospheric pressure at different elevations above mean sea 77 
level. Atmospheric pressure is measured with an instrument called a barometer. Typical 78 
values at mean sea level and at a temperature of 59º F (15º C) are: 79 

𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎 = 1 𝑎𝑎𝑎𝑎𝑎𝑎 = 2,116.22 𝑝𝑝𝑝𝑝𝑝𝑝 = 14.70 𝑝𝑝𝑝𝑝𝑝𝑝 = 101.33 𝑘𝑘𝑘𝑘𝑎𝑎 80 

𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎 = 760 𝑎𝑎𝑎𝑎 𝐻𝐻𝐻𝐻 = 407.19 𝑝𝑝𝑖𝑖 𝐻𝐻2𝑂𝑂 = 29.92 𝑝𝑝𝑖𝑖 𝐻𝐻𝐻𝐻 81 

C.  Absolute pressure and gage pressure.  82 

(1)  Absolute pressure refers to the pressure measured with a zero-value corresponding to 83 
a perfect vacuum, i.e., the total absence of matter in a volume. Absolute pressure 84 
(pabs), therefore, is always a positive quantity. Barometric pressure is an example of 85 
absolute pressure. To emphasize that a certain quantity is reported in units of absolute 86 
pressure, sometimes ‘a’ or ‘abs’ is added to the units of pressure.  For example, 87 
atmospheric pressure is written as: 88 

𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎 = 2,116.22 𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎 = 14.70 𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎 = 101.33 𝑘𝑘𝑘𝑘𝑎𝑎 − 𝑎𝑎𝑎𝑎𝑝𝑝 89 

𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎 = 760 𝑎𝑎𝑎𝑎𝐻𝐻𝐻𝐻 ∙ 𝑎𝑎𝑎𝑎𝑝𝑝 = 427.19 𝑝𝑝𝑖𝑖 𝐻𝐻2𝑂𝑂 ∙ 𝑎𝑎𝑎𝑎𝑝𝑝 = 29.29 𝑝𝑝𝑖𝑖 𝐻𝐻𝐻𝐻 ∙ 𝑎𝑎𝑎𝑎𝑝𝑝 90 

(2)  On the other hand, when measuring pressure with manometers (see next section), it is 91 
possible to shift the zero value of the scale to the level of atmospheric pressure. Thus, 92 
in this gage pressure scale, pressures above atmospheric will be positive, while those 93 
below atmospheric will be negative. 94 

(3)  Absolute and gage pressures are related by the following equation: 95 
𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑝𝑝𝑔𝑔𝑎𝑎𝑔𝑔𝑔𝑔 + 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎 (eq. 2-2) 96 

For example, if the atmospheric pressure is patm = 13.5 psi at a given location, and if a 97 
pressure gage on a pipe reads pgage = -12 psi, then the corresponding absolute 98 
pressure is: 99 

𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑝𝑝𝑔𝑔𝑎𝑎𝑔𝑔𝑔𝑔 + 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎 = -12 psi +13.5 psi = 1.5 psi 100 

D.  Gage pressure distribution in liquids.  101 

(1)  Consider a tank open to the atmosphere. The gage pressure at the free surface of the 102 
tank would be zero, by definition. The gage pressure at any point located at a depth h 103 
below the free surface will be given by: 104 

𝑝𝑝𝑔𝑔𝑎𝑎𝑔𝑔𝑔𝑔 = 0 + 𝜔𝜔ℎ =  𝜔𝜔ℎ (eq. 2-3) 105 
(2)  If the tank is closed and the free surface is pressurized at pressure ps, then the 106 

pressure at a point at depth h below the free surface will be subject to a pressure 107 
given by: 108 

𝑝𝑝 = 𝑝𝑝𝑎𝑎 +  𝜔𝜔𝐻𝐻 109 

(3) The pressure p, calculated above, would be an absolute or a gage pressure depending 110 
on whether ps is given as an absolute or gage pressure, respectively. 111 

  112 
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E.  Example – Pressure at depth in water 113 

As an example, consider the water contained in a reservoir to a depth of 20-ft, as 114 
illustrated in Figure 2-4. 115 
 116 
Figure 2-4:  Calculation of pressures at different depths 117 

 118 
 119 
(1)  Calculating the pressure at points 1, 2, and 3, located at elevations z1 = 15 ft, z2 = 10 120 

ft, and z3 = 5 ft, measured from the reservoir’s bottom, requires that the water depths 121 
be calculated first: 122 
(i)  h1 = 20 ft – z1 = 20 ft – 15 ft = 5 ft 123 
(ii)  h2 = 20 ft – z2 = 20 ft – 10 ft = 10 ft 124 
(iii)  h3 = 20 ft – z3 = 20 ft – 5 ft = 15 ft 125 

(2)  Then using ꞷ = 62.4 lb/ft3 for the specific weight of water, the corresponding (gage) 126 
pressures are: 127 
(i)  p1 = ω h1 = 62.4 lb/ft3 x 5 ft = 312 lb/ft2 = 312/144 lb/in2 = 2.2 psi 128 
(ii)  p2 = ω h2 = 62.4 lb/ft3 x 10 ft = 624 lb/ft2 = 624/144 lb/in2 = 4.3 psi 129 
(iii)  p3 = ω h3 = 62.4 lb/ft3 x 15 ft = 936 lb/ft2 = 936/144 lb/in2 = 6.5 psi 130 

634.0202  Piezometers and Manometers 131 

A.  Manometers are instruments used in the measurement of pressure. The simplest 132 
manometer consists of a u-tube with a leg attached to the point where the pressure will be 133 
measured, and the other leg open to the atmosphere. Such a manometer is illustrated in 134 
figure 2-5. 135 

 136 
Figure 2-5:  Simple manometer (piezometer) 137 

 138 
  139 
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B.  The circle centered at B may represent, for example, the cross-section of a flowing pipe. 140 
The elevation of point A (open to the atmosphere) with respect of the pipe centerline B is 141 
equal to Δh. Now, suppose that the liquid (e.g., water) in the pipe and manometer has a 142 
specific weight ω, then, according to the hydrostatic law, the pressure at B is given by: 143 

pB = pA + ꞷ Δh 144 

C.  If we use gage pressure to report our result, then we can take pA = 0, and the pressure at 145 
the pipe centerline will be simply: 146 

pB = ꞷ Δh 147 

D.  In pipeline flow we are often interested in determining the so-called piezometric head of 148 
the flow at a given location. The piezometric head, as illustrated in figure 2-5, above, is the 149 
sum of the pressure head (Δh = pB/ꞷ) plus the elevation of the pipe centerline zB. Thus, a 150 
manometer, as the one illustrated above, is also known as a piezometer, for it shows the 151 
piezometric head in a pipe flow. 152 

E.  In many cases, piezometers are simply vertical tubes attached to the top of the pipeline, as 153 
illustrated in figure 2-6. 154 

 155 
Figure 2-6:  Piezometers on a horizontal pipe flow 156 

 157 
 158 

F.  The piezometers in figure 2-6 above show the location of the hydraulic grade line (HGL), 159 
which, in a horizontal pipeline, illustrates the decrease in pressure along the pipeline in the 160 
direction of the flow. The piezometers in the figure show that the piezometric head decreases 161 
from A to B to C, thus, hA > hB > hC. The centerline elevation of points A, B, and C is the 162 
same, i.e., zA = zB = zC, therefore, the pressure heads (for point A, the pressure head is hA – zA) 163 
will be such that hAP > hBP > hCP. 164 

G.  The photograph in figure 2-7, below, shows piezometers located before and after an 165 
orifice meter in a transparent pipeline, typically used in a laboratory setting. An orifice meter 166 
is used to measure flow discharge in a pipe. The piezometers are used to measure the pressure 167 
variation about the orifice meter.0 168 

 169 
  170 
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Figure 2-7:  Piezometers near an orifice meter in a pipeline 171 

 172 
 173 

H.   Figure 2-8 below shows a U-tube manometer being used to determine the pressure at the 174 
centerline of a flowing pipe (point C). The flowing fluid has a specific weight ꞷ1, while the 175 
manometric fluid has a specific weight ꞷ2. 176 

 177 
Figure 2-8:  U-tube manometer 178 

 179 
 180 

I.  For the case shown in figure 2-8, above, point A is open to the atmosphere, thus, using 181 
gage pressures, we can write pA = 0. The interface between the two liquids, point B, is called 182 
a meniscus.  Point B is located at a depth Δh2 with respect to the free surface meniscus A. 183 
Thus, the gage pressure at point B can be calculated as: 184 

pB = pA + ꞷ2 Δh2 = 0 + ꞷ2 Δh2 = ꞷ2 Δh2 185 

J.  On the other hand, within the flowing fluid, the pressure at point B can be written as 186 
(hydrostatic law): 187 

pB = pC + ꞷ1 Δh1  188 
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K.  Equating the two expressions found above for pB one can write: 189 

pC + ꞷ1 Δ1 = ꞷ2 Δh2 190 

from which it follows that: 191 

pC = ꞷ2 Δh2 - ꞷ1 Δh1 192 

L.  If the flowing fluid is water, ꞷ1 = ꞷw (the specific weight of water), and ꞷ2 = Smꞷw, 193 
where Sm is the specific gravity of the manometric fluid (e.g., for mercury, Sm = 13.56). Thus, 194 
one can write: 195 

pC = Sm ꞷw Δh2 - ꞷw Δh1 = ꞷw (Sm Δh2 - Δh1) 196 

M.  For example, to determine the pressure at point C in the figure above, given that the 197 
manometric fluid is mercury (Sm = 13.56), and that Δh2 = 6 in = 6/12 ft = 0.5 ft, Δh1 = 2 in = 198 
2/12 ft = 0.167 ft, and ꞷw = 62.4 lb/ft3, using the equation above: 199 

pC = ꞷw (Sm Δh2 - Δh1) = (62.4 lb/ft3) (13.56 x 0.5 ft – 0.167 ft) = 412.7 200 
lb/ft2 201 

or 202 

𝑝𝑝𝑐𝑐 =  
412.7 𝑙𝑙𝑎𝑎
144 𝑝𝑝𝑖𝑖2

= 2.87 𝑝𝑝𝑝𝑝𝑝𝑝 ≈  3 𝑝𝑝𝑝𝑝𝑝𝑝 203 

N.  The photograph in figure 2-9 shows a u-tube manometer used to measure flow discharge 204 
in the pipe located behind the manometer. The manometer legs in the photograph are attached 205 
to tubes connected to a Venturi meter (not shown). The manometric fluid shown is a red 206 
manometric fluid with a specific gravity Sm = 0.75. 207 

 208 
Figure 2-9:  U-tube manometer for flow measurement in a pipeline 209 

 210 
 211 

O.  Rules for manometer calculations.  212 

(1)  The following rules apply to the calculation of pressures in tube manometers 213 
involving many fluids: 214 
(i)  Start at a point of known pressure or at a point where the pressure is required. 215 
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(ii)  Following the tube manometer to the next meniscus, add the product (specific 216 
weight depth) if the meniscus is located below the starting point, or subtract the 217 
same product if the meniscus is located above the starting point. 218 

(iii)  Continuing the path to the next meniscus, add the product (specific weight x 219 
depth) if the meniscus is located below the previous meniscus, or subtract the 220 
same product if the meniscus is located above the previous meniscus. 221 

(iv)  When reaching the ending point in the manometer path, make the resulting sum 222 
equal to the pressure at the ending point. 223 
• For example, for the piezometer in figure 2-5, one can write: 224 

pA + ꞷ Δh = pB 225 
• For the manometer of figure 2-8, one can write: 226 

pA+ ꞷ2 Δh2 - ꞷ1 Δh1 = pC 227 
• As an additional example, consider the case in which a manometer at an 228 

orifice plate, illustrated in figure 2-10, below. 229 
 230 
Figure 2-10:  Schematic of manometric measurements at an orifice 231 
plate in a pipe 232 

 233 
 234 
- To determine the difference in pressures between points 1 and 2, use the 235 
rules for manometer calculations presented above; start at point 1 and first 236 
write: 237 

p1 + ꞷw (d+Δh) 238 
- The above expression reaches from point 1 to meniscus A using water for 239 
the specific weight. From point A to point B, use the specific weight of the 240 
manometric fluid, and subtract the amount ꞷm Δh from the expression 241 
above, thus, producing: 242 

p1 + ꞷw (d + Δh) - ꞷm Δh 243 
- From point B to point 2, subtract the amount ꞷwd from the expression 244 
above, and make the result equal to the pressure at point 2: 245 

p1 + ꞷw (d + Δh) - ꞷm Δh - ꞷwd = p2 246 
- Expanding the expression above: 247 

p1 + ꞷwd +ꞷw  Δh - ꞷm Δh - ꞷwd = p2 248 
- Eliminating the terms + ꞷwd and - ꞷwd, one gets: 249 

p1 + ꞷw  Δh - ꞷm Δh = p2 250 
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- Algebraic manipulation of this equation allows writing: 251 
Δp = p1 – p2 = (ꞷm - ꞷw) Δh 252 

- The resulting equation can be simplified by introducing the specific gravity 253 
of the manometric fluid, i.e., ꞷm = Smꞷw, thus: 254 

Δp = ꞷw Δh (Sm -1) 255 
- If ꞷw = 62.4 lb/ft3, Δh = 8 in = 8/12 ft = 0.666 ft, and Sm = 13.56 (for 256 
mercury), the difference in pressure, Δp is: 257 

Δp = ꞷw Δh (Sm -1) = (62.4 lb/ft3) (0.666 ft) (13.56 - 1)  258 
= 521.97 lb/ft2 259 

or 260 

∆𝑝𝑝 =
521.97 𝑙𝑙𝑎𝑎 

144 𝑝𝑝𝑖𝑖2
= 3.62 𝑝𝑝𝑝𝑝𝑝𝑝 261 

(2) Orifice plates may be used to measure flow in pipelines. The pressure difference, 262 
Δp, can be related to the pipeline discharge by calibration or by theoretical 263 
analysis. Examples of such analyses are presented in the next section. 264 

P.  Deformation Manometers. 265 

(1) Deformation manometers, such as the Bourdon manometer shown in figure 2-11, 266 
utilize the deformation of spiral tubes or of diaphragms to measure pressure. These 267 
manometers are calibrated by manufacturers or in the laboratory and provide a direct 268 
reading of the pressure at the manometric tap. 269 

(2)  Modern deformation manometers have digital readouts, making the reading of the 270 
pressure straightforward. The Bourdon manometer shown in figure 2-11 has an 271 
analog scale, with the pressure marked by the pointer attached to the spiral tube 272 
located inside the manometer. 273 
 274 
Figure 2-11:  Deformation manometer (Bourdon manometer) 275 

 276 
  277 
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634.0203  Forces on Submerged Plane Surfaces 278 

A.  The calculation of the size, direction, and location of the forces on submerged surfaces is 279 
essential in the design of dams, bulkheads, water control gates, and other related 280 
appurtenances. 281 

B.  Horizontal surface. 282 

(1)  The hydrostatic law indicates that pressure varies with depth. Thus, a horizontal 283 
surface within a liquid at rest is subject to the same pressure p over the entire surface, 284 
and the resultant force F on the surface is given by: 285 

F = pA = ꞷhA (eq. 2-4) 286 
where A is the area of the surface. 287 

(2)  Figure 2-12 shows that the pressure on top of the horizontal surface is represented by 288 
vertical arrows of the same height pointing towards the surface. The pressure arrows 289 
and the horizontal surface form a three-dimensional figure known as the pressure 290 
prism. The resultant force vector on any surface coincides with the centroid (also 291 
referred to as the center of mass or center of gravity) of the pressure prism. The force 292 
on a horizontal surface will be vertical and applied to the centroid C of the surface as 293 
illustrated in figure 2-13. The point of application of the force is referred to as the 294 
center of pressure P. 295 

 296 
Figure 2-12:  Force on a submerged horizontal surface 297 

 298 
 299 
 300 
Figure 2-13:  Point of application of a force on a submerged horizontal surface 301 

 302 
  303 
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(3)  Example 2 – Hydrostatic force on horizontal area 304 
(i)  A circular tank 15 ft in diameter is filled with water to a depth of 2 ft. Determine 305 

the magnitude and location of the vertical force that the water applies on the tank 306 
bottom. 307 

(ii)  The tank has a diameter D = 15 ft, therefore, the area of the tank bottom is that of 308 
a circle: 309 

𝐴𝐴 =
𝜋𝜋𝐷𝐷2

4
=

(3.1416)(15 𝑝𝑝𝑎𝑎)2

4
= 176.2 𝑝𝑝𝑎𝑎2 310 

(iii)  The magnitude of the pressure applied to the bottom of the tank can be 311 
calculated by using the specific weight of water, ωW = 62.4 lb/ft3 and depth of the 312 
water in the tank, h = 2 ft: 313 

p = Δh = (62.4 lb/ft3) (2 ft) = 124.8 lb/ft2 314 
(iv)  The magnitude of the force applied on the tank bottom is: 315 

F = pA = (124.8 lb/ft2) (176.71 ft2) = 22,053.4 lb 316 
(v)  The force is applied at the center of the circular bottom and is equivalent to the 317 

weight of the water. 318 

C.  Inclined surface. 319 

(1)  For a surface located on an inclined plane, the pressure increases linearly from the 320 
top of the surface to the bottom of the surface. The magnitude of the force on the 321 
surface is calculated as: 322 

F = pcA = ꞷhcA (eq. 2-5) 323 
where pc = ꞷhc is the pressure at the centroid of the figure. The force, F, is 324 
represented by the volume of the pressure prism. 325 

(2)  Figure 2-14, below, shows the pressure distribution along an inclined surface and the 326 
resulting force on a rectangular region laid on the inclined surface. The rectangular 327 
region could represent a gate on the slope of a dam or dike. The inclined surface is 328 
located at an angle θ with respect to the horizontal. Alternatively, the slope can be 329 
indicated by the proportion zH (horizontal):1V (vertical) as shown in the figure. For 330 
the case illustrated in figure 2-14, the angle θ is related to the slope by: 331 

𝑎𝑎𝑎𝑎𝑖𝑖(𝜃𝜃) =  𝑎𝑎
𝑎𝑎

= 1
𝑧𝑧
 (eq. 2-6) 332 

 333 
Figure 2-14:  Pressure distribution, force, and center of pressure on an inclined 334 
surface 335 
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(3)  Figure 2-14 shows a system of coordinate axes, x and y, located on the inclined 337 
surface. The system is selected so that the x-axis is located along the free surface. 338 
Points on the inclined surface can be located by either their depth h or their y 339 
coordinate along the surface. These two distances are related by: 340 

h = y -sin (θ) (eq. 2-7) 341 
(4)  Point 1 is located at the top of the gate while point 2 is located at the bottom of the 342 

gate. The gate dimensions are B (width) and H (height). Point C represents the 343 
centroid of the gate, while point P represents the point of application of the 344 
hydrostatic force F on the gate, the center of pressure. 345 

(5)  Unlike the case of a horizontal surface, the center of pressure on an inclined surface 346 
is located below the centroid of the surface along the plane of the surface, by a 347 
distance given by: 348 

∆𝑦𝑦 =  𝐼𝐼𝑐𝑐
(𝐴𝐴)𝑦𝑦𝑐𝑐

 (eq. 2-8) 349 

(6)  In this formula, yc is the location of the centroid of the surface measured from the 350 
free surface along the plane of the surface, and Ic is the moment of inertia of the 351 
surface with respect to a centroidal axis parallel to the x axis (i.e., an axis through 352 
point C). Thus, the center of pressure will be located at a distance: 353 

𝑦𝑦𝑝𝑝 =  𝑦𝑦𝑐𝑐 +  ∆𝑦𝑦 =  𝑦𝑦𝑐𝑐 + 𝐼𝐼𝑐𝑐
𝐴𝐴 𝑦𝑦𝑐𝑐

 (eq. 2-9) 354 

(1) For the rectangular and circular figures of figure 2-13, with the x axis representing 355 
the centroidal axis xc, the centroidal moments of inertia are the following: 356 

(i)  Rectangular area:     𝐼𝐼𝑐𝑐 =  1
12 

 𝐵𝐵𝐻𝐻3 (eq. 2-10) 357 

(ii)  Circular area:          𝐼𝐼𝑐𝑐 =  𝜋𝜋
64 

 𝐷𝐷4 (eq. 2-11) 358 

(2) Since most gates are either rectangular or circular, equations 2-10 and 2-11 will be 359 
useful for calculating the center of pressure of those types of gates by using equations 360 
2-8 and 2-9. 361 

(10)  Example 3 – Hydrostatic force on inclined area 362 
(i)  For the rectangular gate illustrated in figure 2-14, B = 3 ft, H = 4.5 ft, a = 2, b = 1, 363 

y1 = 5 ft, determine the force on the gate and the location of the center of 364 
pressure. 365 

(ii)  The slope is specified by the numbers a = 2 and b = 1, i.e., 2H:1V. The 366 
corresponding angle θ is calculated as: 367 

𝜃𝜃 =  𝑎𝑎𝑎𝑎𝑖𝑖−1 �
𝑎𝑎
𝑎𝑎�

=  𝑎𝑎𝑎𝑎𝑖𝑖−1 �
1
2�

= 26.57° 368 

(iii)  While the top of the gate is located at a distance y1 = 5 ft measured along the 369 
slope, the bottom of the gate will be located at: 370 

y2 = y1 + H = 5 ft + 4.5 ft = 9.5 ft 371 
(iv)  The centroid is located midway between y1 and y2: 372 

𝑦𝑦𝑐𝑐 =  𝑦𝑦1+𝑦𝑦2
2

=  5 𝑓𝑓𝑎𝑎+9.5 𝑓𝑓𝑎𝑎
2

 = 7.25 ft 373 

(v)  The depth of the centroid is: 374 
hc = yc sin (θ) = 7.25 ft  x sin (26.57º) = 3.24 ft 375 

(vi)  Thus, the pressure at the centroid is (equation 2-7): 376 
pc = ꞷhc = 62.4 lb/ft3 x 3.24 ft = 202.18 lb/ft2 377 

  378 
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(vii)  The area of the gate is: 379 
A = BH = 3 ft x 4.5 ft = 13.5 ft2 380 

(viii)  The force on the gate (equation 2-5): 381 
F = pcA = 202.18 lb/ft2  x 13.5 ft2= 2,729.43 lb 382 

(viii)  To calculate the location of the center of pressure, start by calculating the 383 
centroidal moment of inertia using equation 2-10: 384 

𝐼𝐼𝑐𝑐 =  
1

12 
 𝐵𝐵𝐻𝐻3 =  

1
12

 (3 𝑝𝑝𝑎𝑎)(4.5𝑝𝑝𝑎𝑎) = 22.78 𝑝𝑝𝑎𝑎4 385 

(ix)  The distance between the centroid C and the center of pressure is calculated with 386 
equation 2-8: 387 

∆𝑦𝑦 =  
𝐼𝐼𝑐𝑐
𝐴𝐴 𝑦𝑦𝑐𝑐

=  
22.78 𝑝𝑝𝑎𝑎2

(13.5 𝑝𝑝𝑎𝑎2 )(7.25 𝑝𝑝𝑎𝑎)
= 0.23 𝑝𝑝𝑎𝑎 388 

(x) The center of pressure is located at the distance (equation 2-9): 389 
yp = yc + Δy = 7.25 ft + 0.23 ft = 7.48 ft. 390 

(xi)  And the depth of the center of pressure is (equation 2-7): 391 
hp= yp sin (θ) = 7.48 ft x sin (26.56º) = 3.35 ft. 392 

D.  Vertical surface. 393 

(1)  In figure 2-15, a rectangular surface of width B is located on a vertical plane and the 394 
free surface of the water reaches to a depth H. 395 
 396 
Figure 2-15:  Pressure prism (a) and force location (b) for a vertical rectangular 397 
surface 398 

 399 
 400 

(2)  The triangular distribution in figure 2-15(b) represents the pressure distribution on 401 
the vertical surface. The pressure at the bottom is given by pB = ωH. The force F on 402 
the surface is equal to the volume of the pressure prism: 403 

𝐹𝐹 = �1
2 
𝑘𝑘𝐵𝐵𝐻𝐻�𝐵𝐵 =  1

2
𝜔𝜔 𝐵𝐵 𝐻𝐻2 (eq. 2-12) 404 

(3)  Using equations 2-9 and 2-10 and the area of this rectangular surface, A = BH, one 405 
can prove that the location of the center of pressure (point of application of the force) 406 
is given by: 407 

𝑦𝑦𝑝𝑝 =  ℎ 𝑝𝑝 =  2
3
𝐻𝐻 (eq. 2-13)  408 
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(4)  Thus, the force is applied at 2/3 of the depth measured from the surface, or 1/3 of the 409 
depth measured from the bottom as indicated in figure 2-15 (b). Examples of this 410 
type surface include vertical gates and flashboards. 411 

(5)  Example 4 – Hydrostatic force on vertical gate 412 
(i)  A wooden vertical gate with a width of 10 ft is used to close a canal. If the water 413 

depth on the gate is 2.5 ft, determine the hydrostatic force on the gate and its 414 
location. 415 

(ii)  Solution: 416 
• For this case B = 10 ft, H = 2.5 ft, and ꞷ= 62.4 lb/ft3, thus, the force is 417 

(equation 2-12): 418 

𝐹𝐹 =  
1
2 

 𝜔𝜔 𝐵𝐵 𝐻𝐻2 =  
1
2

 (62.4)(10 𝑝𝑝𝑎𝑎)(2.5)2 = 1950 𝑙𝑙𝑎𝑎 419 

• The force is located at a distance from the surface (equation 2-13): 420 

𝑦𝑦𝑝𝑝 =  ℎ 𝑝𝑝 =  
2
3
𝐻𝐻 =  

2
3

 2.5 𝑝𝑝𝑎𝑎 = 1.67 𝑝𝑝𝑎𝑎 421 

• The use of a spreadsheet application greatly facilitates calculation of forces 422 
on submerged plane surfaces. 423 

634.0204  Buoyancy 424 

A.  Bouyancy Forces 425 

Buoyancy is the upwards force experienced by solid bodies submerged in liquids or 426 
gases. Archimedes’ principle states that a solid body submerged in a fluid (i.e., liquid or 427 
gas) experiences a vertical upward force (the buoyancy force) equal to the weight of the 428 
volume of fluid it displaces. Thus, the buoyancy force, FB, experienced by a body of 429 
volume V submerged in a fluid of specific weight ꞷ, is given by: 430 

FB = ꞷV (eq. 2-14) 431 

B.  Buoyancy Applications 432 

(1)  A solid body submerged is also acted upon by its own weight, which can be 433 
calculated as 434 

W = ꞷs V (eq. 2-15) 435 
where ꞷs is the specific weight (weight per unit volume) of the solid material. 436 

(2)  A solid body fully submerged in water is subject to its own weight W (equation 2-15) 437 
and the buoyancy force (equation 2-14) exerted by the water on the solid body.  438 
Figure 2-16 illustrates several possibilities in terms of force equilibrium when a solid 439 
body, fully submerged in water, is released. 440 
 441 
Figure 2-16:  Buoyancy and weight forces acting on a submerged body 442 
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(3)  If the net resulting force, FR, on the body, i.e., the difference between its weight W 444 
and the buoyancy force FB, is zero, the body is said to be neutrally buoyant and it will 445 
remain in place within the water as illustrated in figure 2-16 (a). 446 

(4)  The net resulting force, FR, is a downward force if the weight is larger than the 447 
buoyancy force (W>FB), i.e., if the specific weight of the solid is larger than that of 448 
water ꞷs > ꞷ, e.g., metal). In this case the solid body will sink into the liquid until 449 
reaching the bottom of a container, as illustrated in figure 2-16 (b). 450 

(5)  On the other hand, if the weight is smaller than the buoyancy force (W<FB), i.e., if 451 
the specific weight of the solid is smaller than that of water (ꞷs < ꞷ, e.g., wood), 452 
when released, the body will float upwards towards the free surface as illustrated in 453 
figure 2-16 (c). A floating body will reach equilibrium when its weight is balanced by 454 
an equal buoyancy force F’B, calculated based on the volume of water displaced 455 
below the flotation line (Vb). Therefore, for the case illustrated in figure 2-16 (d): 456 

W = F’B = ꞷVb (eq. 2-16) 457 

C.  Example 5 – Buoyancy force calculation – depth of a loaded barge 458 

(1)  A small barge with a rectangular bottom 4 ft by 3 ft is to be used to carry 400 lb of 459 
construction materials. What is the minimum depth needed to carry such weight? 460 

(2)  Solution - The weight W = 400 lb must be balanced by the buoyancy force on the 461 
barge, namely, F’B = 62.4 lb/ft3 x 4 ft x 3 ft x h, thus: 462 

ℎ =  
400

�62.4 𝑙𝑙𝑎𝑎𝑝𝑝𝑎𝑎3� (4 𝑝𝑝𝑎𝑎)(3 𝑝𝑝𝑎𝑎)
= 0.53 𝑝𝑝𝑎𝑎 = (0.53 𝑝𝑝𝑎𝑎) �

12𝑝𝑝𝑖𝑖
𝑝𝑝𝑎𝑎 � = 6.4𝑝𝑝𝑖𝑖 463 

D.  Example 6 – Buoyancy force calculation – flotation safety of CMP inlet 464 

(1)  Figure 2-17 below shows a cylindrical CMP (corrugated metal pipe) vertical inlet of 465 
diameter d = 36 in = 3 ft, supported on a square footing of side length L, and height 466 
hb =13.5 in = 1.125 ft. The inlet footing is covered with saturated soil up to a depth h 467 
= 7 ft which corresponds to the level of the inlet crest. The CMP inlet weighs ꞷCMP = 468 
38 lb/ft, the buoyant weight of saturated soil on the footing is ꞷSS = 60 lb/ft3, and the 469 
concrete in the footing weighs ꞷC = 150 lb/ft3. Determine the size L of footing 470 
required to make the CMP inlet safe from flotation with a factor of safety F.S.= 1.5. 471 
Assume that there is no frictional resistance between the inlet walls and the 472 
surrounding soil, and that no shear forces act on the outlet conduit. The minimum 473 
length L must be L = d + 1 ft to allow for placement of reinforcing steel bars outside 474 
of the inlet with 3 in concrete cover and 2 in clearance between bars and inlet. 475 

(2)  Solution: 476 
(i)  The factor of safety, F.S. for this case, is defined as the ratio of the net downward 477 

forces (ΣFd) to the net upward forces (ΣFu): 478 

𝐹𝐹. 𝑆𝑆. =  
∑𝐹𝐹𝑑𝑑
∑𝐹𝐹𝑢𝑢

 479 

(ii)  Here, Σ, indicates summation of forces. By requiring that the factor of safety be 480 
F.S. = 1.5, the downward forces are 50% larger than the upward forces ensuring 481 
that the inlet will be safe from flotation. 482 

 483 
  484 
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Figure 2-17:  Cylindrical CMP vertical inlet on a square footing 485 

 486 
 487 

(iii)  Using the minimum length of footing: 488 
L = d + 1ft = 3 ft + 1 ft = 4 ft 489 

(iv)  The downward forces in this problem include the weight of the inlet, WCMP, the 490 
buoyant weight of saturated soil, WSS, and the weight of footing, WC. With the 491 
minimum length, these forces are calculated as follows: 492 

WCMP = ꞷCMP (h+hb) = 38 lb/ft ×(7 ft + 1.125 ft) = 308.75 lb 493 
WSS = ꞷSS (L2h – πd2/4 h) = 60 lb/ft3 × ((4 ft)2 - 3.1416 × (3ft)2/4) × (7 ft) 494 

= 3,751.2 lb 495 
WC = ꞷCL2hb = 150 lb/ft3× (4 ft)2 × 1.125 ft = 2,700 lb 496 

Thus, 497 
ΣFd = WCMP + WSS + WC = 308.8 lb + 3,751.2 lb + 2,700 lb = 6,760 lb 498 

(v)  The upward forces include the buoyancy forces on the riser, FBCMP, and on the 499 
footing, FBC, which are calculated as: 500 

FBCMP = ꞷw (πd2/4) h = 62.4 lb/ft3 × (3.1416 × (3 ft)2/4) ×7 ft = 3,088 lb  501 
FBC = ꞷw L2hb = 62.4 lb/ft3× (4 ft)2 × 1.125 ft = 1,123 lb 502 

Thus, 503 
ΣFu = FBCMP +FBC =3,087 lb + 1,123 lb = 4,210 lb 504 

(vi)  The factor of safety for a side of footing L = 4 ft is: 505 

𝐹𝐹. 𝑆𝑆. =  
∑𝐹𝐹𝑑𝑑
∑𝐹𝐹𝑢𝑢

=  
6760
4210 

= 1.61 > 1.5 𝑜𝑜𝑘𝑘 506 

(vii)  Since the factor of safety calculated is larger than 1.5 the CMP inlet should be 507 
safe for buoyancy. If F.S. < 1.5, try a larger footing side length or height, and 508 
recalculate the sum of forces and the factor of safety until it is larger than the 509 
required value of 1.5. 510 

  511 
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