Index

A
Adaptive management, 6-37, 9-32
Aggradation
- regression functions, 7-55
Agriculture
- vegetative clearing, 3-14
- hypothetical condition and restoration response, 8-83
- instream modifications, 3-14
- irrigation and drainage, 3-15
- restoration, 8-83
- sediment and contaminants, 3-15
- soil exposure and compaction, 3-15
Alternatives
- design, 5-17
- restoration alternatives, 5-17
- supporting analyses, 5-25
Aquatic habitat, 2-59
- subsystems, 2-59
Aquatic vegetation, 2-63

B
Backwater
- computation, 7-24
- effects, 7-23
Bank stability, 7-57
- bank erosion, 8-45
- bank stability check, 8-44
- charts, 7-60
- critical bank heights, 7-60
- protection measures, 8-46
- qualitative assessment, 7-57
- quantitative assessment, 7-59
Bank stabilization, 8-45, 8-61
- anchored cutting systems, 8-64
- geotextile systems, 8-65
- trees and logs, 8-66
Bank restoration, 8-61
- inspections, 9-23
Bankfull discharge, 1-17, 7-10
- field indicators, 7-10
Benthic invertebrates, 2-64
- benthic rapid bioassessment, 7-82
Beaver
- ecosystem impacts, 8-26
- impact of dams, 2-58
- transplanting, 8-26
Biological diversity
- complexity, 7-78
- evaluating indices, 7-84
- in developing goals and objectives, 5-6
- Index of Biotic Integrity, 7-79
- measures of diversity, 7-79
- spacial scale, 7-79
- standard of comparison, 7-83
- subsets of concern, 7-79
Buffers, 8-11
- forested buffer strips, 8-89
- multispecies riparian buffer system, 8-81
- requirements, 8-90
- urban stream buffers, 8-12

C
Channel
- 1-12, equilibrium, 1-13
- scarps, 1-12
- size, 1-13
- thalweg, 1-12
- Channel form, 1-26
- anastomosed streams, 1-27
- braided streams, 1-27
- predicting stable type, 8-30
- Channel incision, 1-20
- Channel slope, 2-22
- longitudinal profiles, 2-22
- Channel cross section, 2-23
- composite and compound cross sections, 7-23
- field procedures, 7-24
- site/reach selection, 2-23, 7-23
- Channel evolution models, 7-30
- advantages of, 7-34
- applications of geomorphic analysis, 7-37
- limitations of, 7-36
- Channel-forming (or dominant) discharge, 1-16, 7-3, 7-8
- determining from recurrence interval, 7-4, 7-12
- determining from watershed variables, 7-15
- mean annual flow, 7-15
- Channel models, 8-40
- computer models, 8-41
- physical models, 8-41
- Channel restoration, 8-28
- dimensions, 8-32, 8-37
- inspection, 9-23
- maintenance, 9-26
- moving beds, known slope, 8-38
- moving beds, known sediment concentration, 8-39
- reconstruction procedures, 8-28
- reference reach, 8-33
- shape, 8-43
- Channel roughness, 2-24
- formation of aquatic habitat, 2-25
- in meandering streams, 2-25
- Channel stability
- bank, 7-50
- bed, 7-51
- local, 7-51
- systemwide, 7-51
- Channel widening, 7-60
- predictions, 7-62
- Channelization and diversions, 3-8
- restoration design, 8-79
- CompMech (compensatory mechanisms), 7-92
- use with PHABSIM, 7-92
- Conditions in stream corridor, 4-19
- causes of impairment, 4-23
- condition continuum, 4-22
- management influence, 4-26
- Conduit function, 2-82
- Connectivity and width, 2-79, 8-4, 8-17
- reference stream corridor, 8-7
- restoration design, 8-20
- Conservation easements, 6-7
- Contouring, 9-13
- Cost components and analysis, 5-21
- benefits evaluation, 5-29
- cost-effectiveness analysis, 5-26
- data requirements, 5-21
- decision making, 5-28
- estimations, 6-29
- incremental cost analysis, 5-27
- Cross section surveys, 7-53
- Cultural resources, 9-8

D
Dams
- as a disturbance, 3-7
- best management practices, 8-77
- effects on stream corridors, 8-77
- Glen Canyon Dam spiked flow experiment, 3-9
- removal, 8-78
Data analysis and management, 7-72
- costs, 6-30
Degradation
- regression functions, 7-54
Design, 8-1
Discharge, 1-16
- continuity equation, 7-17
- design discharge for restoration, 8-29
- measurement, 7-25
Drainage, for implementation, 9-11
Dynamic equilibrium, I-1, 2-86
Disturbance, 2-87, 3-1
Arnold, MO flood, 3-5
- biological, 3-6, 7-96
- broad scale, 3-3
- causal chain of events, 3-1
- chemical, 3-6
- natural disturbances, 3-3
- physical, 3-6

E
Ecological Restoration, I-3
Ecosystem
- internal/external movement model, 1-3
- stream-riparian, 2-53
- relationship btw. terrestrial/aquatic ecosystems, 2-75
- river floodplain, 2-53
Effective discharge, 1-17, 7-13
Erosion, 2-15, 2-27,
- control of, 2-27, 9-4
Environmental impact analysis, 5-30
Eutrophication, 2-73
Evaluation, 6-34, 6-41
 baseline characterization, 9-29
effectiveness monitoring, 9-32
 fish barrier modifications, 9-36
 human interest, 9-38, 9-46
 implementation monitoring, 9-32
 parameters, 9-32
 performance evaluation, 9-29
 reference sites, 9-35
 risk assessment, 9-29
 trend assessment, 9-29
 validation monitoring, 9-32
Evaporation, 2-6
Evapotranspiration, 2-7
Exotic species, 3-10
 control, 8-79
 salt cedar, 3-12
 Western U.S., 3-11

F
Fauna
 aquatic fauna, 2-63
 beaver (see Beaver above)
 benthic invertebrates, 2-63
 birds, 2-57
 fish, 2-65
 habitat features, 2-56
 mammals, 2-58
 mussels, 2-67
 reptiles and amphibians, 2-57
 Fencing, 9-20
 Filter and barrier functions, 2-84
 edges, 2-85
 Fish, 2-65
 barriers, 8-75, 9-36
 bioindicators, 7-83
 feeding and reproduction strategies, 2-66
 managing restoration, 9-46
 species richness, 2-65
Flooding, 1-12
 hydrologic flooding, 1-18
 topographic flooding, 1-18
 flood storage, 1-18
 lag time, 1-18
 lateral accretion, 2-26
 stability, 2-24
 vertical accretion, 2-26
 Floodplain landforms and deposits, 1-19
 backswamps, 1-19
 chute, 1-19
 clay plug, 1-19
 meander scroll, 1-19
 natural levees, 1-19
 oxbow, 1-19
 oxbow lake, 1-19
 restoration of microrelief, 8-8
 splay, 1-19
 flood-pulse concept, 1-21
Flow
 allowable velocity check, 8-48, 8-51
 allowable stress check, 8-48, 8-51
 baseflow, 1-14, 2-13
daily mean streamflow, 7-6
ecological impacts, 2-15
ephemeral streams, 1-16
 effluent or gaining reaches, 1-16
 impact on fauna, 2-68
 influent or “losing” reaches, 1-16
 intermittent streams, 1-16
 mean annual flow, 7-15
 peak flow, 7-6
 perennial streams, 1-16
 stormflow, 1-14
 sources of data, 7-6
 uniform flow, 7-20
Flow duration, 2-14
 flow duration curve, 7-3
Flow frequency, 2-14, 7-4
 flood frequency analysis, 7-4, 7-7
 low-flow frequency analysis, 7-7
Food patches, 8-25
Forests and forestry
 Functions, 2-78
 barrier, 2-78
 conduit, 1-8, 2-78
 filter, 2-78
 habitat, 2-78
 sink, 2-78
 source, 2-78
 Funding, organization, 4-9
 restoration implementation, 6-2
Ground water
 aquifer, 2-10
 capillary fringe, 2-10
 confined aquifer, 2-11
 pellicular water, 2-10
 phreatic zone, 2-11
 recharge area, 2-11
 springs, seeps, 2-11
 unconfined aquifer, 2-11
 vadose zone, 2-10

H
Habitat Evaluation Procedures (HEP), 7-87
Habitat functions, 2-78
 edge and interior, 2-81, 2-21
Habitat Recovery (instream), 8-70
 procedures, 8-71
Hydraulic geometry
 channel planform, 7-47
 hydraulic geometry curves Salmon River, 7-43
 hydraulic geometry theory, 7-41, 8-36
 meander geometry, 7-47, 7-48, 7-49
 regime formulas, 7-49
 regime theory, 7-44
 regional curves, 7-44
 relations based on mean annual discharge, 7-41
 stability assessment, 7-44
Hydrologic cycle, 2-3
 Hydrologic unit cataloging, 1-9

I
Indicator species, 7-76
 aquatic invertebrates
 habitat evaluation procedures, 7-78
 riparian response guilds, 7-78
 selecting indicators, 7-77
Infiltration, 2-8
 infiltration capacity, 2-8
 infiltration rate, 2-8
 porosity, 2-8
Implementing restoration, 6-2
 construction, 9-12
 emergency maintenance, 9-26
 flow diversion, 9-14
 minimizing disturbance, 9-4
 plant establishment, 9-15
 remedial maintenance, 9-26
 scheduled maintenance, 9-26
 site preparation, 9-3, 9-10
 staging areas, 9-4
 work zone, 9-3
Inspection, 9-21
Instream Flow Incremental Methodology (IFIM), 5-24, 7-88,
Instream structures, 8-72
- design, 8-72
- engineered log jams, 9-30
- inspection, 9-23
Interception, 2-4
- precipitation pathways, 2-5
Irrigation, 9-20

L
- Landscape scale, 1-7
 - in goals and objective development, 5-5
Land use
- design approaches for common effects, 8-76
- developing goals and objectives, 5-3
- summary of disturbance activities, 3-26
Log jams, engineered, 9-30
Longitudinal zones, 1-24
Longitudinal profile, 2-23, 8-43
- adjustments, 2-23

M
- Managing restoration, 9-40
- Manning’s equation, 7-17
 - direct solution for Manning’s n, 7-18
 - Froude number, 7-21
 - indirect solution for Manning’s n, 7-19
 - Manning’s n in relation to bedforms, 7-21
- Monitoring, 6-22
 - acting on results, 6-37
 - dissemination of results, 6-39
 - documenting and reporting, 6-38
 - inspection, 9-21
 - monitoring plan, 6-23, 6-25, 6-29, 6-33
 - performance criteria, 6-24
 - level of effort, 6-31
 - parameters, and methods, 6-26
 - target conditions, 6-26
 - types of data, 6-31
- Montgomery and Buffington classification system, 7-29
- Mining
 - altered hydrology, 3-19
 - contaminants, 3-20
 - reclamation, 8-96
 - soil disturbance, 3-20
 - vegetative clearing, 3-20
- Mulches, 9-19

N
- Nest structures, 8-25

O
- Oak Ridge Chinook salmon model (ORCM), 7-92
- Organic material, 2-73
 - autochthonous, 1-30, 2-73
 - allochthonous, 1-30, 2-73
 - heterotrophic, 1-30
- Organizing restoration
 - advisory group, 4-4
 - boundary setting, 4-3
 - commitments, 6-10
 - contractors, 6-10
 - characteristics of success, 6-17
 - decision maker, 4-4
 - decision structure, 4-10
 - dividing responsibilities, 6-4, 6-6
 - documentation, 4-13
 - information sharing, 4-12
 - permits, 6-13
 - schedules, 6-12
 - scoring process, 4-3
 - sponsor, 4-4
 - technical teams, 4-5, 6-8
 - tools, 6-3
 - volunteers, 6-8
- Overland flow, 2-11
 - depression storage, 2-11
 - Horton overland flow, 2-12
 - surface detention, 2-12
- Physical structure
 - corridor, 1-3
 - patch, 1-3
 - matrix, 1-3
 - mosaic, 1-3
- Pools and riffles, 1-28
 - riffle spacing, 8-43
- Problem/opportunities identification, 4-16
 - baseline data, 4-17
 - community mapping, 4-17
 - data analysis, 4-19
 - data collection, 4-16
 - historical data, 4-17
 - problem/opportunity statements, 4-27
 - reference condition, 4-20
 - reference reach, 4-20
 - reference site, 4-20
- Proper Functioning Condition (PFC), 7-39
- Public outreach, 4-12
 - tools, 4-13

Q
- Quality assurance and quality control costs, 6-29
 - restoration planning, 5-8
 - sampling, 7-73

R
- Rapid bioassessment, 7-80
- Reach file/National Hydrography Dataset, 1-9
- Reach scale, 1-10
 - in developing goals and objectives, 5-7
- Rehabilitation, 1-3
- Recovery, 2-87
- Recreation, 3-21
 - restoration design, 8-97
- Regional hydrological analysis, 7-15
- Regional scale, 1-6
- Rehabilitation, 1-3
- Resistance, 2-87
- Resilience, 2-87
 - in Eastern upland forests, 3-4
- Restoration, 1-2, 1-3
- Riffles (see Pools and riffles)
- Risk assessment, 5-29
- River continuum concept, 1-30
- Riverine Community Habitat Assessment and Restoration Concept Model (RCHARC), 7-91
- Rosgen stream classification system, 7-29
- Runoff, 2-11
 - Quick return flow, 2-13

S
- Salmonid population model (SAMMOD), 7-93
- Sampling
 - automatic, 7-65
 - chain of custody, 7-70
 - discrete versus composite, 7-66
 - field analysis, 7-67
 - field sampling plan, 6-30
 - frequency, 7-63, 6-32
 - grab, 7-65
 - labeling, 7-69
 - laboratory sample analysis, 6-30
 - manual, 7-65
 - packaging and shipping, 7-70
 - preparation and handling, 7-69
 - preservation, 7-69
 - site selection, 7-64
 - timing and duration, 6-32
- Saturated overland flow, 2-13
- Scarp, 1-12
- Schumm classification system, 7-29
 - equation, 2-21
- Sediment
 - ecological and water quality impacts, 2-26
- Sediment control, 9-4
 - hay bales, 9-5
 - silt fence, 9-5
- Sediment deposition, 2-15
- Sediment sampling
 - analysis, 7-71
 - collection techniques, 7-71
Sediment transport, 2-15, 8-53
bed load, 2-18
bed-material load, 2-18, 2-19
budget, 8-56
discharge functions, 8-55
HEC-6, 8-54
impact on habitat, 2-26
impact on water quality, 2-26
measured load, 2-19
particle movement, 2-17
processes, 7-57
saltation, 2-17
sediment load, 2-18
sediment rating curve, 7-13, 8-29
stream competence, 2-16
stream power, 2-19, 8-52
suspended bed material load, 2-18
suspended load, 2-18, 2-19
suspended sediment discharge, 2-18
tractive (shear) stress, 2-16, 8-38, 8-48, 8-51
unmeasured load, 2-19
wash load, 2-18, 2-19
Single-thread streams, 1-26
Sinuosity, 1-27
affecting slope, 2-22
meander design, 8-34, 8-36
Site access, 6-15, 9-4
access easement, 6-16
drainage easement, 6-16
fee acquisition, 6-16
implementation easement, 6-16
right of entry, 6-15
Site clearing, 9-10
Species requirements, 7-86, 8-7
Specific gauge analysis, 7-52
Soil
compaction, 8-9
ecological role of, 2-51
depleted matrix, 2-49
functions, 2-45
hydric soils, 2-48
microbiology, 2-46, 2-51, 8-9
salinity, 8-10
soil surveys, 8-9
topographic position, 2-47
type, 2-46
wetland, 2-48
Soil bioengineering, 8-23, 8-61
gotechnical engineering, 9-13
Soil moisture, 2-9
evaporation, 2-6
deep percolation, 2-9
field capacity, 2-9
permanent wilting point, 2-9
relationship with temperature, 2-47
Source and sink functions, 2-86
Spatial scale, 1-3
landscapes, 1-7
region, 1-6
reach, 1-10
watershed, 1-8
Stability (in stream and floodplain), 2-20, 2-87
assessment, 8-44
allowable stress check, 8-48
allowable velocity check, 8-48
controls, 8-64
horizontal stability, 8-45
vertical stability, 8-44
Storm hydrograph, 1-15
after urbanization, 1-15
recession limb, 1-15
rising limb, 1-15
Stream classification, 7-26, 7-85
applications of geomorphic analysis, 7-37
advantages, 7-27
alluvial vs. non-alluvial, 7-27
limitations, 7-27
use in restoring biological conditions, 7-86
Stream corridor, 1-1
adjustments, 2-21
common features, 1-12
Stream corridor scale, 1-10
in developing goals and objectives, 5-6
Stream health
visual assessment, 7-76
Stream instability, 7-50
bed stability, 7-51
local, 7-51
systemwide, 7-51
Stream order, 1-25
as a classification system, 7-28
stream continuum concept, 1-30
Stream scale, 1-10
Stream stability (balance), 1-14, 2-20
Stream system dynamics, 7-48
Substrate, 2-71
bed material particle size distribution, 7-25, 8-28
hyporheic zone, 2-72
pebble count, 7-25
vertical (bed) stability
Subsurface flow, 2-12
T
Temporal scale, 1-11
Terrace, 1-20
formation, 1-20
numbering, 1-21
Thalweg, 1-12
profiles, 7-53
surveys, 7-53
Transitional upland fringe, 1-12, 1-20
Transpiration, 2-5
Two-dimensional flow modeling, 7-90
U
Urbanization, 3-22
altered channels, 3-24, 8-97
altered hydrology, 3-23, 8-97
design tools, 8-101
habitat and aquatic life, 3-25
inspection program, 9-25
runoff controls, 8-99
sediment controls, 8-100
sedimentation and contaminants, 3-24
V
Valley form, 8-4
Vegetation
across the stream corridor, 1-21
along the stream corridor, 1-29
canyon effect, 2-54
distribution and characteristics, 2-51
flooding tolerances, 7-96, 8-22
horizontal complexity, 2-52, 8-17
internal complexity (diversity), 2-51
landscape scale, 2-53
structure, 2-55
stream corridor scale, 2-53
vertical complexity (diversity), 2-55, 8-21
zonation, 7-96
Vegetation-hydroperiod modeling, 7-94
use in restoration, 8-23
Vegetation restoration, 8-14
existing vegetation, 8-11
inspection, 9-24
maintenance, 9-28
restoration species, 8-10
revegetation, 8-14, 9-15
W
Waste disposal, sanitation, 9-9
Water surface
energy equation, 7-21
profile, 7-18
slope survey, 7-24
Water temperature, 2-28
effects of cover, 2-68
impacts of surface versus ground water pathways, 2-28
impacts on fauna, 2-68
sampling, 7-68
thermal loading, 2-28
Water quality
- acidity, 2-30, 2-31
- alkalinity, 2-30, 2-31
- biochemical oxygen demand (BOD), 2-32
- dissolved oxygen, 2-31, 2-70,
 (sampling) 7-68
- iron, 2-29
- metals, 2-44
- nitrogen, 2-35
- pH, 2-30, 2-71, (sampling) 7-68
- phosphorus, 2-35
- restoration implementation, 9-6
- salinity, 2-29
- toxic organic chemicals, 2-38

Watershed, 1-24
- designing for drainage and
 topography, 8-8
- drainage patterns, 1-25
- watershed scale, 1-8

Wetlands, 2-60
- functions, 2-61
- hydrogeomorphic approach, 2-62
- National Wetlands Inventory, 2-61
- palustrine wetlands, 2-62
- plant adaptation, 2-49
- USFWS Classification of Wetlands
 and Deepwater Habitats of the United States, 2-61

Width (see Connectivity and width)